树、森林、二叉树

原创 2016年05月31日 23:18:36

1、普通树转换为二叉树

I、加线:在所有兄弟结点之间加一条连线。

II、去线:对树中每个结点,只保留它与第一个孩子的结点的连线,删除它与其他孩子结点之间的连线。

III、层次调整:以树的根节点为轴心,将整棵树顺时针旋转一定的角度,使之层次结构分明。


2、森林转换为二叉树

I、把每棵树转换为二叉树。

II、第一棵二叉树不动,从第二棵二叉树开始,依次把后一棵二叉树的根节点作为前一棵二叉树的根节点的右孩子,用线连接起来。


3、二叉树转换为树、森林

I、二叉树转换为普通树是刚才的逆过程,步骤也就是反过来做而已。

II、判断一棵二叉树就能够转换成一棵树还是森林,标准很简单,那就是看这棵二叉树的根节点有没有右孩子,有的话就是森林,没有的话就是一棵树。


4、树与森林的遍历

I、树的遍历分为两种方式:一种是先根遍历,另一种是后根遍历。

II、先根遍历:先访问树的根结点,然后再依次先根遍历根的每棵子树。

III、后根遍历:先依次遍历每棵子树,然后再访问根结点。

IV、森林的遍历也分为前序遍历和后序遍历,其实就是按照树的先根遍历的和后根遍历依次访问森林的每一棵树。

V、树、森林的前(后)根(序)遍历和二叉树的前(后)序遍历结果相同。


5、由先序和中序序列确定二叉树

I、由先序序列中的第一个结点确定根结点D。

II、由根结点D分割中序序列:D之前的是左子树L的中序序列,D之后是右子树R的中序序列,同时获得L和R的结点个数。

III、根据左子树L结点个数,分割先序序列:第一结点根D,之后是左子树L的先序序列,最后是右子树R的先序序列。


6、由中序和后序序列确定二叉树

I、由后序序列中的最后一个结点确定根结点D。

II、由根结点D分割中序序列:D之前是左子树L的中序序列,D之后是右子树R的中序序列,同时获得L和R的结点个数。

III、根据左子树L的结点个数,分割后序序列:首先是左子树L的后序序列,随后是右子树R的后序序列,最后是根节点D。


附加树的基本术语:

结点(Node):包含一个数据元素及若干指向其子树的分支。

结点的度(Degree):结点拥有子树的个数称为该结点的度。

树的度:树中所有结点的度的最大值。

叶子结点(Leaf):树中所有结点的度的最大值。

内部结点(Internal node):度不为0的结点称为内部结点,也称为分支结点或非终端结点。

孩子结点(Child):结点的子树的根(即直接后继)称为该结点的孩子结点。

双亲结点(Parent):结点是其子树的根的双亲,即结点是其孩子的孩子结点。

兄弟结点(Sibling)::同一双亲的孩子结点之间互称兄弟结点。

堂兄弟:双亲是兄弟或堂兄弟的结点间互称堂兄弟结点。

祖先结点(Ancestor):结点的祖先结点是指从根结点到该结点的路径上的所有结点。

子孙结点(Descendant):结点的子孙结点是指该结点的子树的所有结点。

结点的层次(Level):结点的层次是从树根开始定义,根为第一层,根的孩子为第二层。若某结点在第k层,则其孩子就在k+1层,以此类推。

树的深度(Depth):树中的所有结点层次的最大值称为树的深度,也称树的高度。

前辈:层号比该结点层号小的结点,都可以称为该结点的前辈。

后辈:层号比该结点大的结点,都可以称为该结点的后辈。

森林(Forest):m(吗>=0)棵互不相交的树的集合称为森林。在数据结构中,树和森林不像自然界中有明显的量的差别,可以称0棵树、1棵树为森林。任意一棵非空的树,删去根结点就变成了森林;反之,给森林中各个树增加一个统一的根结点,就变成了一棵树。

有序树(Ordered tree)和无序树(Unordered tree):树中结点的各子树从左往右是有特定次序的树称为有序数,否则称为无序树。

版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

森林转换为二叉树

#include #include #define DEGREE 5 //树的高度 #define NULL 0 #define QUEUESIZE 10 #define MAX_NODE_...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)