HDU 1573 X问题(中国剩余定理)

原创 2016年05月31日 01:13:28

题目链接
HDU 1573 X问题
题意:
求解在(0, N]区间满足 x ≡ a[i](mod m[i])(0<= i < M)的x的个数。
分析:
利用中国剩余定理求解出最小非负整数解a0(如果有解)和解的周期m0,假设解的个数为k个
则:a0 + k * m0 <= N –> k <= (N - a0) / m0,(N >= a0)
当a0 = 0时解的个数是(N - a0) / m0.
当a0 > 0时解的个数是(N - a0) / m0 + 1.

#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <climits>
#include <cmath>
#include <ctime>
#include <cassert>
#define IOS ios_base::sync_with_stdio(0); cin.tie(0);
using namespace std;

typedef long long ll;
const int MAX_N = 15;

int T, M;
ll N, a0, m0, a[MAX_N], m[MAX_N];

ll ex_gcd(ll aa, ll bb, ll& xx, ll& yy)
{
    if(bb == 0) {
        xx = 1, yy = 0;
        return aa;
    }
    ll dd = ex_gcd(bb, aa % bb, yy, xx);
    yy -= aa / bb * xx;
    return dd;
}

//求解: m0 * x = (aa - a0) (mod mm)
bool ModularLinearEquation(ll& m0, ll& a0, ll mm, ll aa) 
{
    ll x, y, d;
    d = ex_gcd(m0, mm, x, y);
    if(labs(aa - a0) % d != 0) return false;
    mm /= d;
    x = x * (aa - a0) / d % mm;
    a0 += x * m0;
    m0 *= mm;
    a0 = (a0 % m0 + m0) % m0;
    return true;
}

bool CRT(ll& m0, ll&a0)
{
    bool flag = true;
    m0 = 1, a0 = 0; //任意数 mod m0 = a0恒成立
    for(int i = 0; i < M; i++){
        if(ModularLinearEquation(m0, a0, m[i], a[i]) == false){
            flag = false;
            break;
        }
    }
    return flag;
}

int main()
{
    scanf("%d", &T);
    while(T--){
        scanf("%lld%d", &N, &M);
        for(int i = 0; i < M; i++){
            scanf("%lld", &m[i]);
        }
        for(int i = 0; i < M; i++){
            scanf("%lld", &a[i]);
        }
        if(CRT(m0, a0) == false || N < a0) printf("0\n");
        else {
            //printf("a0 = %lld m0 = %lld\n", a0, m0);
            printf("%lld\n", (N - a0) / m0 + (a0 == 0 ? 0 : 1));
        }
    }
    return 0;
}
版权声明:缥缈玉京人,想语然、京兆眉妩。

hdu 1573 X问题 中国剩余定理(直接模板就OK了)

#include #include #include using namespace std; void gcd(int a,int b,int &d,int &x,int &y) {//a*x...
  • a601025382s
  • a601025382s
  • 2013年08月25日 10:21
  • 3025

HDOJ 题目1573 X问题(中国剩余定理,拓展欧几里得)

X问题 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Subm...
  • yu_ch_sh
  • yu_ch_sh
  • 2014年12月13日 18:20
  • 1034

hdu1573 X问题(中国剩余定理)

X问题 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submiss...
  • d_x_d
  • d_x_d
  • 2015年09月22日 21:58
  • 1513

hdu - 5238 Calculator(线段树+中国剩余定理)线段树好题

原来还不知道中国剩余定理能干什么用,先上几篇中国剩余定理的介绍 下面内容转自:http://wenku.baidu.com/link?url=g1Hiu6UtSoOR6Y3tiHpn5M3_HPn...
  • u010660276
  • u010660276
  • 2015年06月06日 13:33
  • 806

HDU 5768 Lucky7 数论 中国剩余定理

原题见HDU 5768求[l,r]范围内是7的倍数,同时不满足任意一个给定的同余式的数的个数。如范围为[1,100],不满足模3余2或模5余3的7的倍数有7,21,42,49,70,84,91 ,故答...
  • Danliwoo
  • Danliwoo
  • 2016年07月28日 19:03
  • 1702

【hdu】3430 Shuffling【中国剩余定理】

题意:给出n张牌,标号为1-n,然后给出两个序列,序列1表示序列1,2,3,4……,n洗一次牌后到达的,序列2表示目标序列,问初始序列按序列1的洗牌方式洗几次能到达序列2的情况,如果不能到达输出-1 ...
  • a709743744
  • a709743744
  • 2016年07月11日 13:25
  • 482

hdu 1573 X问题 (中国剩余定理)

#include #include #define ll long long using namespace std; long long a[15],b[15]; long long gcd(l...
  • clx55555
  • clx55555
  • 2016年11月02日 20:03
  • 166

hdu 1573 X问题 (中国剩余定理)

X问题 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Subm...
  • clover_hxy
  • clover_hxy
  • 2017年02月14日 10:52
  • 107

HDU - 1573 X问题 (中国剩余定理)

HDU - 1573 X问题 Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d...
  • yanghui07216
  • yanghui07216
  • 2016年04月22日 22:03
  • 155

HDU 1573 X问题 中国剩余定理

链接:http://acm.hdu.edu.cn/showproblem.php?pid=1573 题意:求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X mod a[...
  • u011385365
  • u011385365
  • 2014年07月30日 21:03
  • 786
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:HDU 1573 X问题(中国剩余定理)
举报原因:
原因补充:

(最多只允许输入30个字)