莫比乌斯反演
文章平均质量分 50
ramay7
Life is not short,but float.
展开
-
BZOJ 2005 能量采集(莫比乌斯反演)
题目链接: BZOJ 2005 能量采集 题意: 一块n*m的土地,能量采集器位与(0, 0),如果一棵植物与能量采集器连接成的线段上有k棵植物,那么能量损失为2*k+1,如果没有植物能量损失为1.求总的能量损失。 分析: 定义f(d)为gcd(x,y)=d(x∈[1,n],y∈[1,n]的(x,y)对数,则:ans=∑i=ni=1(2∗i−1)∗f(i)定义f(d) 为gcd(x, y)原创 2016-06-04 13:50:40 · 527 阅读 · 0 评论 -
SPOJ - VLATTICE Visible Lattice Points(gcd(x,y,z)=1的对数/莫比乌斯反演)
题目链接: SPOJ - VLATTICE Visible Lattice Points 题意: 一个n*n*n的方格,从最左下角(0, 0, 0)最多可以看到多少个点?(不被遮挡)包括方格内部。 分析: 假设能看到的点的坐标为(x,y,z)则必须满足:gcd(x,y,z)=1。(0≤x,y,z≤n)。当x=y=z=0时是不成立的。当x,y,z中有两个为0时,只有三种情况(0,0,1),(原创 2016-06-04 13:57:32 · 833 阅读 · 0 评论 -
HDU 4746 Mophues(有趣的前缀和/莫比乌斯反演)
题目链接: HDU 4746 Mophues 题意: 令gcd(a,b)=d,对d质因子分解得到质因子个数为k如果k≤C,则称k为C的lucky数字,给出n,m,p,求a∈[1,n],b∈[1,m]使得gcd(a,b)是p的lucky数字的数字对(a,b)有多少对?令gcd(a, b) = d,对d质因子分解得到质因子个数为k如果k\leq C,则称k为C的lucky数字,给出n,m,p,求a原创 2016-06-05 21:56:31 · 816 阅读 · 0 评论 -
ZOJ 3435 Ideal Puzzle Bobble(gcd(i,j,k)=1/莫比乌斯反演)
题目链接: ZOJ 3435 Ideal Puzzle Bobble 题意: ∑i=0i=a∑j=0j=b∑k=0k=c[gcd(i,j,k)==1],a,b,c∈[1,1000000]\sum_{i=0}^{i=a}\sum_{j=0}^{j=b}\sum_{k=0}^{k=c}[gcd(i,j,k)==1],a,b,c\in [1,1000000] 分析; 1.1.当i=j=k=0i=原创 2016-06-06 21:57:05 · 1990 阅读 · 0 评论 -
BZOJ 2154 Crash的数字表格(sigma(lcm(i,j)),莫比乌斯反演)
题目链接;BZOJ 2154 Crash的数字表格 题意: ∑i=1i=n∑j=1j=mlcm(i,j) % 100000009 (n,m≤107)\sum_{i=1}^{i=n} \sum_{j=1}^{j=m}lcm(i,j)\ \%\ 100000009\ \ (n,m\leq 10^{7}) 分析: ans=∑d=1d=n∑i=1i=n∑j=1j=mi∗jd (gcd(i,j)=原创 2016-06-06 21:52:10 · 816 阅读 · 0 评论 -
Codeforces 235 E Number Challenge(莫比乌斯反演)
题目链接: Codeforces 235 E Number Challenge 题意: 记d(i)表示i的约数个数,计算:∑i=1a∑j=1b∑k=1cd(ijk)记d(i)表示i的约数个数,计算:\sum_{i=1}^{a}\sum_{j=1}^{b}\sum_{k=1}^{c}d(ijk) 分析: Ans = ∑i=1a∑j=1b∑k=1cd(ijk) = ∑i=1a⌊ai⌋∑j=1b原创 2016-06-06 16:00:29 · 1126 阅读 · 0 评论 -
BZOJ 3994 约数个数和(莫比乌斯反演)
题目链接: BZOJ 3994 约数个数和 题意: 求∑ni=1∑mj=1d(i∗j),定义d(i)为i的约数个数.n,m∈[1,50000]求\sum_{i=1}^{n}\sum_{j=1}^{m}d(i*j),定义d(i)为i的约数个数.n,m\in [1, 50000] 分析: ans=∑gcd(i,j)=1⌊ni⌋⌊mj⌋=∑i=1n⌊ni⌋∑j=1m⌊mj⌋ans =\sum_{原创 2016-06-06 02:25:26 · 854 阅读 · 0 评论 -
BZOJ 2301 Problem B(x属于[a,b],y属于[c,d]满足gcd(x,y)=k的(x,y)的有序对数)
题目链接: BZOJ 2301 Problem B 题意: 区间x∈[a,b],y∈[c,d]满足gcd(x,y)=k的(x,y)的对数x\in [a,b],y \in[c,d]满足gcd(x,y)=k的(x,y)的对数 分析: 莫比乌斯反演+优化。#include <cstdio>#include <cmath>#include <cstring>#include <string>原创 2016-06-04 14:01:53 · 1311 阅读 · 0 评论 -
HDU 1695 GCD(gcd(x,y)=k无序对数/容斥原理)
题目链接: HDU 1695 GCD 题意: 求x∈[a,b],y∈[c,d],且gcd(x,y)=k的(x,y)的无序对对数。a=c=1x\in [a,b],y\in[c,d],且gcd(x,y)=k的(x,y)的无序对对数。a=c=1 分析: 和BZOJ 2301的区别就是这里是无序对。 不妨设b≤d,,利用容斥原理那么多计算的部分就是x∈[1,b],y∈[1,b]的部分,那么减掉这原创 2016-06-04 14:13:57 · 1082 阅读 · 0 评论 -
BZOJ 2818 Gcd(gcd(x,y)为素数/欧拉函数/莫比乌斯反演)
题目链接: BZOJ 2818 Gcd 题意: x∈[1,N],y∈[1,N],gcd(x,y)=素数的有序对(x,y)的对数。x\in [1,N],y\in [1, N],gcd(x,y)=素数的有序对(x,y)的对数。 分析: 对于一个素数p,如果gcd(x,y)=p,那么相当于x∈[1,Np],y∈[1,Ny]的(x,y)的对数,又因为是有序对,需要乘以2,那么就是∑Npi=12∗ϕ原创 2016-06-04 14:55:04 · 1555 阅读 · 0 评论