关闭

Codeforces 55D Beautiful Numbers(数位dp,能被自己各个位上数字整除的数字个数)

标签: Codeforces数位dp
103人阅读 评论(0) 收藏 举报
分类:

题目链接:
Codeforces 55D Beautiful Numbers
题意:
定义:一个数如果能够被它所有位上非零数字整除那么这个数就是Beautiful Numbers。
给一个区间[L,R],求这个区间Beautiful Numbers的个数。
数据范围:1LR91018
分析:
这道题清新脱俗啊~
首先一个Beautiful Numbers肯定可以被它所有位上的数字的最小公倍数整除。这个最小公倍数最大是:8*9*5*7=2520。而且2520肯定能被实际的最小公倍数整除,经过计算实际的最小公倍数只有48个(也就是1-9数字任意个任意组合的最小公倍数)。
其次高位到低位dfs时,我们记录对每一位取2520的结果rem和所有位上的最小公倍数lcm,最后判断下rem%lcm==0即可。
关于正确性:不妨假设:2520=klcm
即是判断:(x % (k * lcm))% lcm = 0是否等价于x % lcm = 0这个显然是正确的。这样子做的目的是为了减少状态表示以实现记忆化搜索,方法很巧妙。同时我们把所有整除2520的数字离散化记录一下,只用开50大小的一个维度的空间。

dp[pos][rem][id[lcm]]pos2520remlcmid[lcm]

#include <stdio.h>
#include <math.h>
#include <string.h>
#include <algorithm>
using namespace std;
typedef long long ll;
const int mod = 2520;

ll L, R;
int id[2550], total, digit[20], T;
ll dp[20][2550][50];

void init()
{
    total = 0;
    for (int i = 1; i <= mod; ++i) {
        if (mod % i == 0) {
            id[i] = total++;
        }
    } // total = 48
}

ll dfs(int pos, int rem, int lcm, int limit)
{
    if (pos == -1) return rem % lcm == 0;
    if (!limit && dp[pos][rem][id[lcm]] != -1) return dp[pos][rem][id[lcm]];
    int last = limit ? digit[pos] : 9;
    ll ret = 0;
    for (int i = 0; i <= last; ++i) {
        int nxt = lcm;
        if (i) nxt = i / __gcd(lcm, i) * lcm;
        ret += dfs(pos - 1, (rem * 10 + i) % mod, nxt, limit && (i == last));
    }
    if (!limit) dp[pos][rem][id[lcm]] = ret;
    return ret;
}

ll solve(ll n)
{
    memset(dp, -1, sizeof(dp));
    memset(digit, 0, sizeof (digit));
    int len = 0;
    while (n) {
        digit[len++] = n % 10;
        n /= 10;
    }
    return dfs(len - 1, 0, 1, 1);
}

int main()
{
    init();
    scanf("%d", &T);
    while (T--) {
        scanf("%I64d%I64d", &L, &R);
        printf("%lld\n", solve(R) - solve(L - 1));
    }
    return 0;
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:94141次
    • 积分:5374
    • 等级:
    • 排名:第5032名
    • 原创:463篇
    • 转载:3篇
    • 译文:0篇
    • 评论:11条
    封神之路
    最新评论