借佳佳的《复变函数与积分变换》 看了两天,总算弄懂了傅立叶变换是怎么一回事。但是要实现快速傅立叶变换却不需要弄懂那么多东西,看看《算法导论》里面的第 30 章“多项式与快速傅立叶变换”就可以了。不过《算法导论》的介绍和标准的有点小小的不同,就是旋转因子刚好反过来了,不过还是等效的。
标准的离散傅立叶 DFT 变换形式如:
yk=Σj=0n-1 ajωn-kj = A (ωn-k).
(ωnk 为复数 1 的第 k 个 n 次方根,且定义多项式 A (x) = Σj=0n-1 ajxj )
而离散傅立叶逆变换 IDFT (Inverse DFT)形式如: aj=(Σk=0n-1 ykωnkj)/n .
以下不同颜色内容为引用并加以修正:
快速傅立叶变换(Fast Fourier Transform,FFT)是离散傅立叶变换(Discrete Fourier transform,DFT)的快速算法,它是根据离散傅立叶变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。它对傅立叶变换的理论并没有新的发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步。
设 Xn 为 N 项的复数序列,由 DFT 变换,任一 Xi 的计算都需要 N 次复数乘法和 N -1 次复数加法,而一次复数乘法等于四次实数乘法和两次实数加法,一次复数加法等于两次实数加法,即使把一次复数乘法和一次复数加法定义成一次“运算”(四次实数乘法和四次实数加法),那么求出 N 项复数序列的 Xi ,即 N 点 DFT 变换大约就需要 N2 次运算。当 N =1024 点甚至更多的时候,需要 N2 = 1048576 次运算,在 FFT 中,利用 ωn 的周期性和对称性,把一个 N 项序列(设 N 为偶数),分为两个 N / 2 项的子序列,每个 N / 2点 DFT 变换需要 (N / 2)2 次运算,再用 N 次运算把两个 N / 2点的 DFT 变换组合成一个 N 点的 DFT 变换。这样变换以后,总的运算次数就变成 N + 2 * (N / 2)2 = N + N2 / 2。继续上面的例子,N =1024 时,总的运算次数就变成了525312 次,节省了大约 50% 的运算量。而如果我们将这种“一分为二”的思想不断进行下去,直到分成两两一组的 DFT 运算单元,那么N 点的 DFT 变换就只需要 N * log2N 次的运算,N = 1024 点时,运算量仅有 10240 次,是先前的直接算法的1% ,点数越多,运算量的节约就越大,这就是 FFT 的优越性。
FFT 的实现可以自顶而下,采用递归,但是对于硬件实现成本高,对于软件实现都不够高效,改用迭代较好,自底而上地解决问题。感觉和归并排序的迭代版很类似,不过先要采用“位反转置换”的方法把 Xi 放到合适的位置,设 i 和 j 互为s = log2N 位二进制的回文数,假设 s = 3, i = (110)2 = 6, j = (011)2 = 3, 如果 i ≠ j , 那么 Xi 和 Xj 应该互换位置。(关于这个回文数的生成,是很有趣而且是很基本的操作,想当初偶初学 C++ 的时候就有这样的习题。)当“位反转置换”完成后,先将每一个Xi 看作是独立的多项式,然后两个两个地将它们合并成一个多项式(每个多项式有 2 项),合并实际上是“蝶形运算”(Butterfly Operation, 参考《算法导论》吧^_^),继续合并(第二次的每个多项式有 4 项),直到只剩下一个多项式(有 N 项),这样,合并的层数就是 log2N ,每层都有 N 次操作,所以总共有 N * log2N 次操作。迭代过程如下图所示,自底而上。
自己写的 C++ 源程序,如下:
//
// 快速傅立叶变换 Fast Fourier Transform
// By rappizit@yahoo.com.cn
// 2007-07-20
// 版本 2.0
// 改进了《算法导论》的算法,旋转因子取 ωn-kj (ωnkj 的共轭复数)
// 且只计算 n / 2 次,而未改进前需要计算 (n * lg n) / 2 次。
//
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
const int N = 1024;
const float PI = 3.1416;
inline void swap (float &a, float &b)
{
float t;
t = a;
a = b;
b = t;
}
void bitrp (float xreal [], float ximag [], int n)
{
// 位反转置换 Bit-reversal Permutation
int i, j, a, b, p;
for (i = 1, p = 0; i < n; i *= 2)
{
p ++;
}
for (i = 0; i < n; i ++)
{
a = i;
b = 0;
for (j = 0; j < p; j ++)
{
b = (b