BZOJ 1093 [ZJOI 2007] 最大半连通子图 (tarjan+树形DP)

27 篇文章 0 订阅

题目链接:BZOJ 1093

tarjan缩点,重新建图,再在图上DP
细节:
1.重新建图后有重边,需再开一个数组记录是由谁更新得到
2.顺着边DP比写记忆化搜索方便
3.前后的两个图的边不要搞混

#include<cstdio>
#include<cstring>
#include<iostream>
#include<stack>
#include<queue>
using namespace std;
#define maxn (100000+10)
int N,M,idx=0,tot=0,mnum=0;
long long mod,ans=0;
int head[maxn],dfn[maxn],low[maxn],vis[maxn],belong[maxn],size[maxn],in[maxn];
int head2[maxn],dp[maxn],sai[maxn],hehe[maxn];
struct node{int v,next;}e[1000000+10];
struct edge{int v,next;}e2[1000000+10];

inline int read(){
	int x=0,f=1;char ch=getchar();
	while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
	while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
	return x*f;
}

int k=0;
void adde(int u,int v){
	e[k].v=v; e[k].next=head[u]; head[u]=k++;
}
void adde2(int u,int v){
	e2[k].v=v; e2[k].next=head2[u]; head2[u]=k++;
}

stack<int>q;
void tarjan(int u){
	dfn[u]=low[u]=++idx; vis[u]=1; q.push(u);
	for(int i=head[u];i!=-1;i=e[i].next){
		int v=e[i].v;
		if(!dfn[v]){
			tarjan(v); low[u]=min(low[u],low[v]);
		}
		else if(vis[v])low[u]=min(low[u],dfn[v]);
	}
	if(dfn[u]==low[u]){
		tot++; int now=0,cnt=0;
		while(now!=u){
			now=q.top(); q.pop(); cnt++;
			belong[now]=tot; vis[now]=0;
		}
		size[tot]=cnt;
	}
}

void re_built(){
	k=0;
	for(int u=1;u<=N;u++){
		for(int i=head[u];i!=-1;i=e[i].next){
			int v=e[i].v;
			if(belong[v]!=belong[u]){
				adde2(belong[u],belong[v]); in[belong[v]]++;
			}
		}
	}
}

queue<int>Q;
void find(){
	for(int i=1;i<=tot;i++){
		if(!in[i]){
			Q.push(i);
			sai[i]=1; dp[i]=size[i];
		}
	}
	while(!Q.empty()){
		int u=Q.front(); Q.pop();
		for(int i=head2[u];i!=-1;i=e2[i].next){
			int v=e2[i].v; in[v]--;
			if(!in[v])Q.push(v);
			if(hehe[v]==u)continue; hehe[v]=u;
			if(dp[v]==dp[u]+size[v])sai[v]=(sai[u]+sai[v])%mod;
			if(dp[v]< dp[u]+size[v]){
				dp[v]=dp[u]+size[v]; sai[v] =sai[u];
			}
		}
	}
}

int main(){
	memset(head,-1,sizeof(head));
	memset(head2,-1,sizeof(head2));
	N=read(); M=read(); cin>>mod;
	for(int i=1;i<=M;i++){
		int a=read(),b=read();
		adde(a,b);
	}
	for(int i=1;i<=N;i++)if(!dfn[i])tarjan(i);
	re_built();
	find();
	for(int i=1;i<=tot;i++){
		if(dp[i]>mnum){
			mnum=dp[i]; ans=sai[i];
		}
		else if(dp[i]==mnum)ans=(ans+sai[i])%mod;
	}
	printf("%d\n",mnum);
	cout<<ans<<endl;
	return 0;
}


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值