bzoj 3112(zjoi 2013 防守战线) 线性规划+网络流

题目链接http://www.lydsy.com/JudgeOnline/problem.php?id=3112

话说这道题真心变态。。。终于见识到了浙江省选的难度了。。。

我们根据这道题的样例容易写出这样的不等式组:

x2+x3>=1

x1+x2+x3+x4+x5>=4

x3+x4+x5>=2

所求为min{x1+5*x2+6*x3+3*x4+4*x5},其中x[i]表示在i位置修建塔的个数。

首先打开脑洞,我们容易得出(容易你妹!)要用对偶图的性质来做。http://cxjyxx.me/?p=261该博客中有提到为什么要转成对偶图。那么现在问题就来了,怎样将一堆不等式转为另一堆不等式。本人开始看了很多题解都不懂,然后在看到这张图片时顿悟了= =||


根据这张表,我们可以把样例表示成


其中c为min{x1+5*x2+6*x3+3*x4+4*x5}的系数,对于矩形每一列,0或1的取值表示在原不等式中,每一项x[i]的系数。那么把矩形横着来看,每一排的0或1的取值表示在新不等式中,每一项的系数。根据此表,我们可以得到新的不等式组,其中y为新变量。

y2<=1

y1+y2<=5

y1+y2+y3<=6

y2+y3<=3

y2+y3<=4

所求即为max{y1+5*y2+2*y3}。

我们添加变量,将原式放缩为

y2+y4=1

y1+y2+y5=5

y1+y2+y3+y6=6

y2+y3+y7=3

y2+y3+y8=4

然后我们依次用上一个式子减去下一个式子,就可以得到

y2+y4=1

y1+y5-y4=4

y3+y6-y5=1

y7-y1-y6=-3

y8-y7=1

-y2-y3-y8=-4

然后我们仔细观查这一堆不等式,我们就(bu)可(neng)以得到每个变量在其中出现2次,且一正一负。然后通过我们惊人的联想能力(尼玛)就不难想到,网络流。因为网络流满足流入流量等于流出流量。将每个不等式看做一个点,等式右边的看做容量且费用为0,加入两个虚拟节点,一个为源点,另一个为汇点。对于每个变量x从它为正的式子向为负的式子连一条容量为正无穷,权值为题中读入的边,再跑一次最小费用流即可。

后面的代码是多亏了这位神犇的博客,表示感谢!这是链接 http://www.cnblogs.com/zig-zag/archive/2013/04/23/3036970.html,我觉得他讲的比我好。。。

#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;

#define inf (1e9)
int N,M;
int a[1010][10010],next[10010];

void input(){
	scanf("%d%d",&N,&M);
	for(int i=1;i<=N;i++)scanf("%d",&a[i][0]);
	for(int i=1;i<=M;i++){
		int x,y;
		scanf("%d%d%d",&x,&y,&a[0][i]);
		for(int j=x;j<=y;j++){
			a[j][i]=1;
		}
	}
}

void change(int x,int y){
	int last=-1;
	for(int i=0;i<=M;i++){
		if(a[x][i]){
			next[i]=last;
			last=i;
		}
	}
	for(int i=0;i<=N;i++){
		if(a[i][y]==0||x==i)continue;
		for(int j=last;j!=-1;j=next[j]){
			if(j==y)continue;
			a[i][j]-=a[i][y]*a[x][j];
		}
		a[i][y]=-a[i][y];
	}
}

int ask(){
	while(1){
		int sai=0;
		for(int i=1;i<=M;i++){
			if(a[0][i]>0){
				sai=i;break;
			}
		}
		if(sai==0)return -a[0][0];
		int temp,min_num=inf;
		for(int i=1;i<=N;i++){
			if(a[i][sai]>0&&a[i][0]<min_num){
				temp=i; min_num=a[i][0];
			}
		}
		change(temp,sai);
	}
}

void solve(){
	int ans=ask();
	printf("%d",ans); 
}

int main(){
	input();
	solve();
	return 0;
} 



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值