BZOJ 2324 [ZJOI2011] 营救皮卡丘

题目链接:BZOJ 2324


对于限制“对于k节点,只有1到k - 1节点都被摧毁时,才能经过节点k”,我们可以通过用floyd处理,设dis[i][j]为i到j经过小于j节点的最短路径,进行转移即可。对于限制“每个节点都要被摧毁”,可以用有下界费用流解决。每个节点拆点,S节点与0节点的流出点连容量为k费用为0的边以保证有k个人到达N号节点。我开始wa了两次,因为我拆点的时候,直接是将点号加上N,但是由于这道题有一个0号节点,所以0节点的出点与N节点的入点重复了QAQ。


#include<cstdio>
#include<cstring>
#include<iostream>
#include<queue>
using namespace std;

const int inf = (int)1e8;

int N, M, K, S, T;

bool vis[1000];
int head[1000], dep[1000], fa[1000], dis[200][200];

struct node{
	int u, v, w, c, next;
}e[200000];

inline int read(){
	int x = 0, f = 1; char ch = getchar();
	while(ch < '0' || ch > '9'){if(ch == '-')f = -1; ch = getchar();}
	while(ch >= '0' && ch <= '9'){x = x * 10 + ch - '0'; ch = getchar();}
	return x * f;
}

int k = 0;
void adde(int u, int v, int c, int w){
	e[k].u = u; e[k].v = v; e[k].w = w; e[k].c = c; e[k].next = head[u]; head[u] = k++;
	e[k].u = v; e[k].v = u; e[k].w =-w; e[k].c = 0; e[k].next = head[v]; head[v] = k++;
}

void input(){
	N = read(); M = read(); K = read();
	for(int i = 0; i <= N; ++i){
		for(int j = 0; j <= N; ++j){
			if(i != j)dis[i][j] = inf;
		}
	}
	
	for(int i = 1; i <= M; ++i){
		int x = read(), y = read(), z = read();
		dis[x][y] = min(dis[x][y], z); dis[y][x] = dis[x][y];
	}
}

void floyd(){
	for(int k = 0; k <= N; ++k){
		for(int i = 0; i <= N; ++i){
			for(int j = 0; j <= N; ++j){
				if(k <= i || k  <= j){
					dis[i][j] = min(dis[i][j], dis[i][k] + dis[k][j]);
				}
			}
		}
	}
}

queue<int>q;

void work(){
	int ans = 0;
	while(1){
		int Flow = inf;
		for(int i = 0; i <= T; ++i)dep[i] = inf;
		dep[S] = 0; vis[S] = 1; q.push(S);
		
		while(!q.empty()){
			int u = q.front(); q.pop();
			for(int i = head[u]; i != -1; i = e[i].next){
				int v = e[i].v;
				if(dep[u] + e[i].w < dep[v] && e[i].c > 0){
					dep[v] = dep[u] + e[i].w; fa[v] = i;
					Flow = min(Flow, e[i].c);
					if(!vis[v]){
						q.push(v); vis[v];
					}
				}
			}
			vis[u] = 0;
		}
		
		if(dep[T] == inf)break;
		
		ans += dep[T] * Flow;
		
		int t = T;
		while(t != S){
			e[fa[t]].c -= Flow;
			e[fa[t] ^ 1].c += Flow;
			t = e[fa[t]].u;
		}
	}
	printf("%d\n", ans);
}

void solve(){
	floyd();
	
	memset(head, -1, sizeof(head));
	S = N * 2 + 2; T = N * 2 + 3;
	
	for(int i = 1; i <= N; ++i){
		adde(S, i + N + 1, 1, 0);
		adde(i, T, 1, 0);
		adde(i, i + N + 1, 0, 0);
	}
	adde(S, N + 1, K, 0);
	
	for(int i = 0; i <= N; ++i){
		for(int j = i + 1; j <= N; ++j){
			if(dis[i][j] != inf){
				adde(i + N + 1, j, 1, dis[i][j]);
			}
		}
	}
	
	work();
}

int main(){
	input();
	solve();
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值