周志华《机器学习》课后习题解答系列(三):Ch2 - 模型评估与选择

模型评估与选择
AI助手已提取文章相关产品:

本章概要

本章讲述了模型评估与选择(model evaluation and selection)的相关知识:

2.1 经验误差与过拟合(empirical error & overfitting)

精度accuracy、训练误差(经验误差)training error(empirical error)、泛化误差**generalization error、过拟合**overfitting、欠拟合underfitting;

2.2 模型评估方法(evaluate method)

测试误差testing error、留出法hold-out、分层采样stratified sampling、交叉验证法cross validation、k-折交叉验证**k-fold cross validation、留一法leave-one-out(LOO)、自助法bootstrapping、自助采样bootstrap sampling、包外估计out-of-bag estimate、调参**parameter tuning、验证集validation set;

2.3 模型性能度量(performance measure)

错误率error rate、查准率(准确率)precision、查全率(召回率)recall、P-R曲线、平衡点BEP、F1/Fβ混淆矩阵ROC曲线、AUC、代价敏感cost-sensitive、**代价矩阵**cost matrix、代价曲线cost curve、期望总体代价;

2.4 模型比较检验(comparation & testing)

假设检验hypothesis test、拒绝假设、t-检验t-test、Friedman检验、后续检验post-hoc test、Friedman检验图;

2.5 偏差与方差(bias & variance)

偏差-方差窘境bias-variance dilemma;

习题解答

2.1 分层抽样划分训练集与测试集

这里写图片描述

根据分层采样原则,共有方法:

这里写图片描述.


2.2 留一法与k-折交叉验证法比较

这里写图片描述

因为测试集被划分到训练样本中多的类,设一共100个样本:

留一法:测试集1个样本,训练集99个样本且有50个与测试集真实类别不同,故测试集无法被划分到正确的类,错误率100%

交叉验证法:在采用分层抽样的前提下,分类靠随机猜,错误率因为50%


2.3 F1值与BEP的关联

这里写图片描述

首先给出度量定义:

  • BEP:是P-R曲线上的平衡点坐标值,BEP = P = R (即准确率 = 召回率);

  • F1值:是P与R的调和平均,1/F1 = (1/P + 1/R) / 2;

所以 BEP = F1 (当P = R时) -> BEP(A) > BEP(B).


2.4 TPR、FPR、P、R之间的关联

这里写图片描述

给出混淆矩阵示例如下:

这里写图片描述

然后给出各度量的定义式:

这里写图片描述

详细解释是:

  • P,查准率(准确率),(预测正例)中(真实正例)的比例.
  • R,查全率(召回率),(真实正例)中(预测正例)的比例.
  • TPR,真正例率,(真实正例)中(预测正例)的比例,TPR = R.
  • FPR,假正例率,(真实反例)中(预测正例)的比例.

2.5 AUC推导(有限样例下)

这里写图片描述

直接给出大致思路如下图:

这里写图片描述


2.6 错误率与ROC曲线的关系

这里写图片描述

错误率可由代价-混淆矩阵得出;

ROC曲线基于TPR与FPR表示了模型在不同截断点取值下的泛化性能。

ROC曲线上的点越靠近(1,0)学习器越完美,但是常需要通过计算等错误率来实现P、R的折衷,而P、R则反映了我们所侧重部分的错误率。


2.7 ROC曲线与代价曲线的对应关系

这里写图片描述

ROC曲线的点对应了一对(TPR,FPR),即一对(FNR,FPR),由此可得一条代价线段(0,FPR)–(1,FNR),由所有代价线段构成簇,围取期望总体代价和它的边界–代价曲线。所以说,ROC对应了一条代价曲线,反之亦然。


2.8 ROC曲线与代价曲线的关系

这里写图片描述

比较见表:

Max-minz-score
方法简单计算量相对大一些
容易受高杠杆点和离群点影响对离群点敏感度相对低一些
当加入新值超出当前最大最小范围时重新计算所有之前的结果每加入新值都要重新计算所有之前结果

2.9 卡方检验过程

这里写图片描述

可直接参考:卡方检验 - 百度百科


您可能感兴趣的与本文相关内容

<think>嗯,用户想将影刀RPA流程打包成exe文件,但根据提供的引用内容,影刀在这方面可能有限制。我需要先确认影刀是否支持直接导出exe。根据引用[1],蓝印RPA支持打包应用为exe,而影刀可能没有这个功能。用户可能需要替代方案,比如使用第三方工具或者转换平台。 接下来,用户的需求可能不仅仅是打包exe,还希望流程独立运行,不需要主程序或登录账号。引用[3]提到火语言支持生成可执行程序,或许可以考虑将流程迁移到火语言,但用户可能更倾向于继续使用影刀,所以需要寻找其他方法。 可能的解决方案包括:1. 使用PyInstaller将Python脚本打包成exe,但需要影刀支持导出Python代码。如果影刀允许导出脚本,这可能可行。2. 使用蓝印RPA,如引用[1]所述,但用户可能需要重新开发流程。3. 使用火语言的发布功能,如引用[3]提到的,同样可能需要迁移流程。 还需要注意引用[2]中提到的jar打包参数,但用户需要的是exe,可能需要其他打包工具。需要检查影刀是否提供API或插件支持导出为可执行文件,或者是否有社区开发的工具。 总结步骤:首先确认影刀是否支持导出为可执行文件,如果不支持,建议使用第三方工具如PyInstaller,或者迁移到支持打包的RPA平台如蓝印或火语言。同时,注意保持流程的独立性和无需登录的特点。</think>### 分步解答:将影刀RPA流程打包为EXE的可行性分析 根据现有信息,影刀RPA**暂未开放原生打包EXE功能**,但可通过以下三种方式实现类似需求: #### 1. 通过第三方工具间接实现(需代码导出权限) - **步骤**: 1. 尝试从影刀导出流程Python脚本(需管理员权限或开放源码功能) 2. 使用PyInstaller工具打包脚本: ```bash pip install pyinstaller pyinstaller --onefile your_script.py ``` - **限制**:影刀默认不开放源码导出功能,需企业版或特殊授权[^1] #### 2. 迁移至支持EXE打包的RPA平台 推荐替代方案: - **蓝印RPA**(引用[1]): - 支持将流程打包为独立EXE - 无需主程序或账号登录 - 迁移需重新开发流程 - **火语言**(引用[3]): - 提供可视化拖拽开发 - 支持生成可执行程序 - 学习成本较低 #### 3. 虚拟机封装方案 - **原理**:将影刀主程序与流程封装至轻量级虚拟机 - **工具**:使用VMware ThinApp或Docker容器化 - **缺点**:文件体积较大(约200MB+),运行需虚拟机环境
评论 16
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值