Snoopy_Yuan技术部落格

眼前是起伏的群山,脚下的奔腾的江河。

Kaggle滑水 - CTR预估(FM_FFM)

本文继续以Avazu-CTR赛题为背景,尝试采用FM(Factorization Machine,因子分解机)及FFM(Field-aware Factorization Machine,场感知因子分解机)来进行CTR预估任务。 本文的源码托管于我的Github:PnYuan - Kag...

2018-06-15 11:31:17

阅读数 653

评论数 0

Kaggle滑水 - CTR预估(GBDT-LR)

本文继续以Avazu-CTR赛题为场景,采用GBDT(梯度提升树)与LR(逻辑回归)相结合的方法来完成CTR预估任务; 本文的源码托管于我的Github:PnYuan - Kaggle_CTR,欢迎查看交流。 1.GBDT-LR方案 集成模型如GBDT、XGBoost等,可被用于原始...

2018-06-15 11:30:18

阅读数 974

评论数 1

Kaggle滑水 - CTR预估(LR)

下面,我们结合Kaggle赛题:Avazu:Click-Through Rate Prediction,练习数据挖掘技术在CTR预估中的应用。 本文内容包括赛题任务简析,以及基于LR(逻辑斯蒂回归)的初步实现。 本文的源码托管于我的Github:PnYuan - Kaggle_CTR,...

2018-06-15 11:28:47

阅读数 439

评论数 0

Kaggle滑水 - 泰坦尼克之灾(决策树)

本文以Kaggle新手习题——Titanic: Machine Learning from Disaster为场景开展实验,以此熟悉Kaggle平台。 本文的源码托管于我的Github:Practice-of-Machine-Learning/code/Kaggle_Titanic/,欢迎查...

2018-04-26 11:52:56

阅读数 453

评论数 0

深度学习基础 - 对象检测(CNN+滑窗+YOLO)

本文以自动驾驶场景下的对象检测(Object Detection)为研究对象,学习理解滑窗卷积和YOLO等内容。 1.对象检测 对象检测(Object Detection)的目的是”识别对象并给出其在图中的确切位置”,其内容可解构为三部分: 识别某个对象(Classificatio...

2018-04-20 17:11:03

阅读数 1026

评论数 1

深度学习基础 - MNIST实验(tensorflow+CNN)

深度学习基础 - MNIST实验(Tensorflow-CNN) 本文的完整代码托管在我的Github PnYuan - Practice-of-Machine-Learning - MNIST_tensorflow_demo,欢迎交流。 1.任务背景 这里,我们拟通过搭建卷积神经网...

2018-03-17 12:07:53

阅读数 478

评论数 0

深度学习基础 - MNIST实验(tensorflow+MLP)

采用MLP(多层感知机)模型进行mnist分类任务,尝试Adam、Dropout等训练策略。 本文的完整代码托管在我的Github PnYuan - Practice-of-Machine-Learning - MNIST_tensorflow_demo,欢迎交流。 1.任务背景 在前一...

2018-03-15 16:43:17

阅读数 509

评论数 0

深度学习基础 - MNIST实验(tensorflow+Softmax)

基于tensorflow开发框架,搭建softmax模型完成mnist分类任务。 本文的完整代码托管在我的Github PnYuan - Practice-of-Machine-Learning - MNIST_tensorflow_demo,欢迎访问。 1.任务背景 1.1.目的 ...

2018-03-15 16:38:44

阅读数 291

评论数 0

【深度学习基础】数字手势识别实验:2.MLP

“数字手势识别”实验,基本的MLP(多层感知机)实现。

2017-10-05 21:57:33

阅读数 996

评论数 0

【深度学习基础】数字手势识别实验:1.任务描述

“数字手势识别”实验任务背景及数据集描述。

2017-10-04 21:48:59

阅读数 1425

评论数 1

周志华《机器学习》课后习题解答系列(七):Ch6 - 支持向量机

本章学习了支持向量机。基础知识部分包括SVC、软间隔、核技巧、SVR等,实践部分涉及了SVM、SVR的实现。

2017-07-25 17:00:48

阅读数 3899

评论数 0

天池离线赛 - 移动推荐算法(四):基于LR, RF, GBDT等模型的预测

本文讨论如何基于模型来进行预测,使用的模型包括逻辑回归(LR)、随机森林(RF)、梯度迭代提升树(GBDT)。.

2017-07-22 22:47:03

阅读数 12574

评论数 13

天池离线赛 - 移动推荐算法(三):特征构建

本文讨论如何进行特征构建,为之后基于模型的方法提供有效的数据支持。

2017-07-14 13:43:25

阅读数 6017

评论数 19

机器学习基础:集成学习方法应用实验(RF、GBDT)

本文回顾了集成学习的基础知识,并以RF、GBDT为典型算法进行了实验。

2017-07-07 21:59:56

阅读数 3130

评论数 0

周志华《机器学习》课后习题解答系列(七):Ch6.3 - SVM对比实验

采用UCI-Breast Cancer数据集进行分类实验,对比分析了SVM/BP网络/C4.5决策树...

2017-07-06 11:17:57

阅读数 1159

评论数 1

周志华《机器学习》课后习题解答系列(七):Ch6.2 - 支持向量分析实验

支持向量机拟合实验,比较不同核函数下支持向量的差别,实验基于sklearn完成。

2017-07-05 10:11:46

阅读数 1469

评论数 2

天池离线赛 - 移动推荐算法(二):基于简单规则的预测

本文讨论如何运用一个简单的规则来进行预测,主要目的是感受一下天池赛答题评分的过程。

2017-06-03 10:25:37

阅读数 3930

评论数 5

Hadoop环境搭建(ubuntu+hadoop2.7 - 伪分布式)

简要回顾了Hadoop的基本知识,介绍了基于Ubuntu的Hadoop伪分布式环境搭建。

2017-05-22 22:28:16

阅读数 1652

评论数 0

天池离线赛 - 移动推荐算法(一):题目与数据解析

移动推荐算法是阿里天池赛2015年赛题之一,题目以移动电商平台的真实用户-商品行为数据为基础来构建商品推荐模型。该题现已成为新人入门的经典演练对象,博主也希望基于该题场景,加深对机器学习相关知识的理解,积累实践经验。 题目回顾 关于题目和数据的介绍可访问天池官网中的:离线赛(移动推荐算法)...

2017-05-17 23:10:16

阅读数 8470

评论数 5

周志华《机器学习》课后习题解答系列(六):Ch5 - 神经网络

本章学习了神经网络。基础知识部分包括感知机、BP算法、RNN、SOM、深度学习等内容,实践部分涉及了多种神经网络模型的应用实验。

2017-05-12 09:18:09

阅读数 3866

评论数 1

提示
确定要删除当前文章?
取消 删除
关闭
关闭