关闭

数论 ural 1356. Something Easier

522人阅读 评论(0) 收藏 举报

思路:根据哥德巴赫猜想,

(A): 任一大于2的偶数都可写成两个质数之和。

(B): 任一大于7的奇数都可写成三个素数之和。

详细内容可参照维基百科http://zh.wikipedia.org/wiki/%E5%93%A5%E5%BE%B7%E5%B7%B4%E8%B5%AB%E7%8C%9C%E6%83%B3

#include <iostream>
#include <sstream>
#include <string>
#include <queue>
#include <stack>
#include <vector>
#include <list>
#include <map>
#include <algorithm>
#include <numeric>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <set>
#include <deque>
#include <bitset>
#include <functional>
#include <utility>
#include <iomanip>
#include <cctype>
using namespace std;

#define FOR(i,a,b) for(i = (a); i < (b); ++i)
#define FORE(i,a,b) for(i = (a); i <= (b); ++i)
#define FORD(i,a,b) for(i = (a); i > (b); --i)
#define FORDE(i,a,b) for(i = (a); i >= (b); --i)
#define max(a,b) ((a) > (b)) ? (a) : (b)
#define min(a,b) ((a) < (b)) ? (a) : (b)
#define CLR(a,b) memset(a,b,sizeof(a))
#define PB(x) push_back(x)

typedef long long LL;
typedef vector<int> VI;

const int MAXN = 31623;
const int hash_size = 25000002;
const int INF = 0x7f7f7f7f;

bool p[MAXN]={0}, flag;
int prime[MAXN]={0}, q[4], n, d;
void init()
{
    int i;
    for(i = 2; i <= 31622; i++)
		if(!p[i])
		{
			prime[0]+=1;
			prime[prime[0]]=i;
			for(int j=i+i;j<=31622;j+=i)
				p[j]=true;
		}
}

bool isprime(int n){
    if (n == 2)
        return true;
    else {
        int sq, i;
        sq = int(sqrt(n*1.0));
        for (i = 2; i <= sq+1; ++i)
            if (n%i == 0)
                return false;
        return true;
    }
}

void dfs(int k,int x,int y)
{
    int i;
    if (flag)  return;
    if (k == 1)
    {
        if (isprime(x))
        {
            FORD(i, d, 1)
                printf("%d ", prime[q[i]]);
            printf("%d\n", x);
            flag = true;
        }
        return;
    }
    for (i = y; i<=prime[0]; ++i)
    {
        if (prime[i]*k > x)  return;
        q[k] = i;
        dfs(k-1, x-prime[i], i);
    }
}

int main()
{
    init();
    int t, i;
    scanf("%d", &t);
    while (t--) {
        scanf("%d", &n);
        if (isprime(n))
            printf("%d\n", n);
        else if (n&1) {
            d = 1;
            flag = false;
            while (!flag)
                dfs(++d, n, 1);
        }
        else {
            int tmp;
            FORE(i, 1, prime[0]) {
                tmp = n - prime[i];
                if (isprime(tmp)) {
                    printf("%d %d\n", prime[i], tmp);
                    break;
                }
            }
        }
    }
    return 0;
}


1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:102277次
    • 积分:1858
    • 等级:
    • 排名:千里之外
    • 原创:83篇
    • 转载:6篇
    • 译文:0篇
    • 评论:13条