数论 ural 1356. Something Easier

原创 2012年03月22日 12:12:33

思路:根据哥德巴赫猜想,

(A): 任一大于2的偶数都可写成两个质数之和。

(B): 任一大于7的奇数都可写成三个素数之和。

详细内容可参照维基百科http://zh.wikipedia.org/wiki/%E5%93%A5%E5%BE%B7%E5%B7%B4%E8%B5%AB%E7%8C%9C%E6%83%B3

#include <iostream>
#include <sstream>
#include <string>
#include <queue>
#include <stack>
#include <vector>
#include <list>
#include <map>
#include <algorithm>
#include <numeric>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <set>
#include <deque>
#include <bitset>
#include <functional>
#include <utility>
#include <iomanip>
#include <cctype>
using namespace std;

#define FOR(i,a,b) for(i = (a); i < (b); ++i)
#define FORE(i,a,b) for(i = (a); i <= (b); ++i)
#define FORD(i,a,b) for(i = (a); i > (b); --i)
#define FORDE(i,a,b) for(i = (a); i >= (b); --i)
#define max(a,b) ((a) > (b)) ? (a) : (b)
#define min(a,b) ((a) < (b)) ? (a) : (b)
#define CLR(a,b) memset(a,b,sizeof(a))
#define PB(x) push_back(x)

typedef long long LL;
typedef vector<int> VI;

const int MAXN = 31623;
const int hash_size = 25000002;
const int INF = 0x7f7f7f7f;

bool p[MAXN]={0}, flag;
int prime[MAXN]={0}, q[4], n, d;
void init()
{
    int i;
    for(i = 2; i <= 31622; i++)
		if(!p[i])
		{
			prime[0]+=1;
			prime[prime[0]]=i;
			for(int j=i+i;j<=31622;j+=i)
				p[j]=true;
		}
}

bool isprime(int n){
    if (n == 2)
        return true;
    else {
        int sq, i;
        sq = int(sqrt(n*1.0));
        for (i = 2; i <= sq+1; ++i)
            if (n%i == 0)
                return false;
        return true;
    }
}

void dfs(int k,int x,int y)
{
    int i;
    if (flag)  return;
    if (k == 1)
    {
        if (isprime(x))
        {
            FORD(i, d, 1)
                printf("%d ", prime[q[i]]);
            printf("%d\n", x);
            flag = true;
        }
        return;
    }
    for (i = y; i<=prime[0]; ++i)
    {
        if (prime[i]*k > x)  return;
        q[k] = i;
        dfs(k-1, x-prime[i], i);
    }
}

int main()
{
    init();
    int t, i;
    scanf("%d", &t);
    while (t--) {
        scanf("%d", &n);
        if (isprime(n))
            printf("%d\n", n);
        else if (n&1) {
            d = 1;
            flag = false;
            while (!flag)
                dfs(++d, n, 1);
        }
        else {
            int tmp;
            FORE(i, 1, prime[0]) {
                tmp = n - prime[i];
                if (isprime(tmp)) {
                    printf("%d %d\n", prime[i], tmp);
                    break;
                }
            }
        }
    }
    return 0;
}


URAL 做题记录

1005. Stone Pile ///背包思想,就是满背包思想,尽可能的装满一半或者一半多1的量! 其实数据量不大,还可以用爆搜,对于每一种物品,选择房还是不放! DFS,然后对全局变量ans...
  • zhangyanxing666
  • zhangyanxing666
  • 2013年06月23日 21:01
  • 2520

URAL——1204(数论之线性方程)

题目地址:http://acm.timus.ru/problem.aspx?space=1&num=1204 解析:n=pq,然后x(x-1)=pqM(M可以为任何正整数),因此就是解(x1)p-(...
  • shenqixiaojiang
  • shenqixiaojiang
  • 2013年08月03日 09:05
  • 439

URAL 1099 Work Scheduling(一般图匹配模板)

#include #include #include #include #include #include #include #include #include #include ...
  • u013654696
  • u013654696
  • 2015年07月16日 13:59
  • 411

URAL - 1486 Equal Squares 哈希、二维hash、二分、卡大素数

题意:给出n个长度为m的字符串(n,m
  • ProLightsfxjh
  • ProLightsfxjh
  • 2017年03月12日 15:10
  • 708

ACM 数论知识 合集

关于欧几里得的那些事真是醉了啊,刚才写了两个小时的博文,想保存到草稿箱里,结果显示服务器异常,结果返回一看,卧槽,写的都没了,心中是万千草泥马呼啸而过呀。。。还得从新写呀。欧几里得算法最大公约数问题是...
  • baidu_33153085
  • baidu_33153085
  • 2016年08月06日 16:50
  • 3064

URAL 做题记录 V2

题号 标题 难度系数 算法 1100 Final Standings 50% 反复统计 1101 Robot in the fie...
  • zhangyanxing666
  • zhangyanxing666
  • 2013年08月12日 14:27
  • 3022

URAL-1627-Join(生成树计数模板)

URAL-1627-Join(生成树计数模板)生成树计数ppt题目链接:URAL-1627-Join对于度数矩阵 DD 。Dij={d[i],0,if i=j,d[i]为点i的度数elseD{ij}=...
  • jinglinxiao
  • jinglinxiao
  • 2017年02月28日 14:14
  • 249

数论经典题目

题目:Special Prime   推导: n^b + p*n^(b-1) = m^b n^(b-1)*[n+p]=m^b 因为n里面要么有p因子,要么没有,所以 gcd(n^(b-1),n+p)=...
  • ACdreamers
  • ACdreamers
  • 2013年02月05日 22:55
  • 3539

ACM数论中的常见的模板和结论

1:最大公约数的求法 欧几里得算法实现。递归实现 1 #include 2 #includestring.h> 3 #include 4 #include 5 using n...
  • NaCl__
  • NaCl__
  • 2015年12月31日 08:41
  • 494

NOIP 2016[数论复习]

-------------------by NKSuperGate 数论是NOIP中比较有难度的一类题,其实数论的结论很容易记住,但是如何应用和转化它就是一大难点了,在有限的时间内推出无瑕疵的公式、结...
  • getsum
  • getsum
  • 2016年11月17日 20:04
  • 1139
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:数论 ural 1356. Something Easier
举报原因:
原因补充:

(最多只允许输入30个字)