摘自数论概论的内容:
素数的两平方数之和定理:设p是素数,则p是两平方数之和的充要条件是p= 1(mod 4) (或 p = 2).
两平方数之和定理实际上由两个陈述组成:
陈述1:如果p是两平方数之和,则p = 1(mod 4).
证明:设p = a^2 + b^2,p是奇数,所以a,b为一奇一偶,设a为奇数, b为偶数.比如 a= 2*n+1 b = 2*m.p = a^2 + b^2 = 4n^2+4n+1+4m^2 = 1 (mod 4).
陈述2:如果p = 1(mod 4),则p是两平方数之和. 这个的证明很麻烦,主要依据费马降阶法,可以参考数论概论第26章。
简单的说,如果p = 1(mod 4),不直接获得p是两平方数之和,而是将p的某个倍数表示成两个平方数之和。由二次互反律知x^2=-1(mod p)有一解,令x = a,b = 1,
a*a + b*b = Mp.利用费马降阶不断减小p的倍数使其可以表示两平方数之和,最终使p变成两平方数之和。如何利用已知的a, b, M来产生新的a, b, M.有恒等式:
(v^2+v^2)(a^2+b^2) = (ua+vb)^2 + (va-ub)^2.降阶程序有5个断言,只列出内容:1)a^2 + b^2 = Mp; 应用恒等式,我们选取的u,v满足u=a(mid M), v= b(mod M)
-M/2<= u, v, <= M/2. 于是有,u^2 + v^2 = a^2 + b^2= 0 (mod M),u^2 + v^2能被M整除,设u^2 + v^2 = Mr.其余四个断言陈述:2)r>=1; 3)r < M; 4)ua + vb能被M整除,
5)va-ub能被M整除。
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <cmath>
using namespace std;
typedef __int64 lint;
lint pow_mod(lint r, lint x, lint p) {
lint pm = 1;
while (x) {
if (x&1)
pm = (pm*r)%p;
r = r*r%p;
x >>= 1;
}
return pm;
}
int main()
{
lint p, a, b, r, x, s, M, u, v, k, y, z, pm;
while (scanf("%I64d", &p) != EOF) {
if ((p-1)%4)
printf("Illegal\n");
else {
b = 1;
srand(NULL);
r = rand()%(p-2)+2;
x = (p-1)>>2;
pm = pow_mod(r, x, p);
while ((pm*pm)%p != p - 1) {
r = rand()%(p-1)+1;
pm = pow_mod(r, x, p);
}
a = pm;
s = a*a + b*b;
while (s != p) {
M = s/p;
k = M>>1;
u = (a%M + M)%M;
v = (b%M + M)%M;
if (u > k)
u = M - u;
if (v > k)
v = M - v;
if ((u*a + v*b)%M)
swap(a, b);
y = (u*a + v*b)/M;
z = (v*a - u*b)/M;
s = y*y + z*z;
a = y;
b = z;
}
if (a < 0)
a = -a;
if (b < 0)
b = -b;
if (a > b)
swap(a, b);
printf("Legal %I64d %I64d\n", a, b);
}
}
return 0;
}