【BZOJ1052】【HAOI2007】覆盖问题 二分+深搜check

这篇博客介绍了如何解决BZOJ1052和HAOI2007比赛中的覆盖问题,通过采用二分查找结合深度搜索的方法进行求解。文章主要讨论了问题的解决方案,并提供了证明正方形位置应在角落的思路,同时附带了相关代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题解:乱搞。

就是搜每个正方形的位置(一定在一个角,证明自己想想吧,很容易但是不算太好写)


代码:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 20100
#define inf 0x3f3f3f3f
using namespace std;

struct Point 
{
	int x,y;
	Point(int _x=0,int _y=0):x(_x),y(_y){}
	bool ins(int xl,int xr,int yl,int yr)
	{
		if(x<xl||xr<x)return 0;
		if(y<yl||yr<y)return 0;
		return 1;
	}
}P[N];
int vis[N];
int n;

bool check(int mid,int dep,int xl,int xr,int yl,int yr) // 当前矩形
{
	if(xl>xr)return 1;
	if(dep>3)return 0;

	int i,j,k;
	int ra[4],rb[4],rc[4],rd[4]; // 这个东西我竟然傻叉到开了全局……  sad story
	ra[0]=ra[1]=xl,rb[0]=rb[1]=xl+mid;
	ra[2]=ra[3]=xr-mid,rb[2]=rb[3]=xr;
	rc[0]=rc[2]=yl,rd[0]=rd[2]=yl+mid;
	rc[1]=rc[3]=yr-mid,rd[1]=rd[3]=yr;

	for(j=0;j<4;j++)
	{
		int sxl=ra[j],sxr=rb[j],syl=rc[j],syr=rd[j]; // 当前正方形
		int nxl=inf,nxr=-inf,nyl=inf,nyr=-inf; // 新矩形
		for(i=1;i<=n;i++)if(!vis[i])
		{
			if(P[i].ins(sxl,sxr,syl,syr))vis[i]=dep;
			else {
				nxl=min(nxl,P[i].x),nxr=max(nxr,P[i].x);
				nyl=min(nyl,P[i].y),nyr=max(nyr,P[i].y);
			}
		}
		if(check(mid,dep+1,nxl,nxr,nyl,nyr))return 1;
		for(i=1;i<=n;i++)if(vis[i]==dep)vis[i]=0;
	}
	return 0; 
}
int main()
{
//	freopen("test.in","r",stdin);
	int i,j,k;
	int x,y;
	scanf("%d",&n);
	int xl=inf,xr=-inf,yl=inf,yr=-inf;
	for(i=1;i<=n;i++)
	{
		scanf("%d%d",&x,&y);
		xl=min(xl,x),xr=max(xr,x);
		yl=min(yl,y),yr=max(yr,y);
		P[i]=Point(x,y);
	}
	int l=0,r=max(xr-xl,yr-yl),mid,ans;
	while(l<r)
	{
		if(r-l<3)
		{
			ans=inf;
			for(i=r;i>=l;i--)
			{
				memset(vis,0,sizeof(vis));
				if(check(i,1,xl,xr,yl,yr))ans=i;
			}
			break;
		}
		int mid=l+r>>1;
		memset(vis,0,sizeof(vis));
		if(check(mid,1,xl,xr,yl,yr))r=mid;
		else l=mid;
	}
	printf("%d\n",ans);
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值