题目描述
有
N
N
N个位置,
M
M
M个操作。操作有两种,每次操作如果是1 a b c
的形式表示在第
a
a
a个位置到第
b
b
b个位置,每个位置加入一个数
c
c
c。如果是2 a b c
,表示询问从第
a
a
a个位置到第
b
b
b个位置,第
c
c
c大的数是多少。
输入格式
第一行
N
,
M
N,M
N,M,接下来
M
M
M行,每行形如1 a b c
或2 a b c
输出格式
输出每个询问的结果
样例
样例输入
2 5
1 1 2 1
1 1 2 2
2 1 1 2
2 1 1 1
2 1 2 3
样例输出
1
2
1
题解
前置知识:整体二分
如果掌握了整体二分,这道题就会变得十分简单。
首先,整体二分中有插入、删除和查询三种操作,但这道题显然只需要插入和查询两种操作。不过,整体二分模板中的插入是单点插入,但这题是区间插入。所以我们就要将维护当前状态的数状数组改为线段树,这样维护当前状态有利于区间修改。其他部分与整体二分模板相同。时间复杂度为 O ( n l o g 2 n ) O(nlog^2n) O(nlog2n)
code
#include<bits/stdc++.h>
#define lc k<<1
#define rc k<<1|1
using namespace std;
int n,m,gs;
long long num[50005];
struct node{
int x,y,tp,id,ans;
long long z,now;
}w[100005],w1[100005],w2[100005];
struct tree{
long long sum,ly;
}tr[1000005];
bool cmp(node ax,node bx){
return ax.id<bx.id;
}
void down(int k,int l,int r){
int mid=(l+r)/2;
tr[lc].sum+=(mid-l+1)*tr[k].ly;
tr[rc].sum+=(r-mid)*tr[k].ly;
tr[lc].ly+=tr[k].ly;
tr[rc].ly+=tr[k].ly;
tr[k].ly=0;
}
void ch(int k,int l,int r,int x,int y,int a){
if(l>=x&&r<=y){
tr[k].sum+=(r-l+1)*a;tr[k].ly+=a;return;
}
if(l==r) return;
down(k,l,r);
int mid=(l+r)/2;
if(x<=mid) ch(lc,l,mid,x,y,a);
if(y>mid) ch(rc,mid+1,r,x,y,a);
tr[k].sum=tr[lc].sum+tr[rc].sum;
}
long long find(int k,int l,int r,int x,int y){
if(l>=x&&r<=y){
return tr[k].sum;
}
if(l==r) return 0;
down(k,l,r);
int mid=(l+r)/2;
long long re=0;
if(x<=mid) re+=find(lc,l,mid,x,y);
if(y>mid) re+=find(rc,mid+1,r,x,y);
return re;
}
void gt(int h,int t,int l,int r){
if(h>t) return;
if(l==r){
for(int i=h;i<=t;i++){
if(w[i].tp==2) w[i].ans=l;
}
return;
}
int mid=(l+r)/2;
int l1=0,r1=0;
for(int i=h;i<=t;i++){
if(w[i].tp==1){
if(w[i].z<=mid){
w1[++l1]=w[i];
ch(1,1,n,w[i].x,w[i].y,1);
}
else w2[++r1]=w[i];
}
else{
long long v=find(1,1,n,w[i].x,w[i].y);
if(w[i].now+v>=w[i].z) w1[++l1]=w[i];
else{
w[i].now+=v;
w2[++r1]=w[i];
}
}
}
for(int i=h;i<=t;i++){
if(w[i].tp==1&&w[i].z<=mid){
ch(1,1,n,w[i].x,w[i].y,-1);
}
}
for(int i=1;i<=l1;i++) w[h+i-1]=w1[i];
for(int i=1;i<=r1;i++) w[h+l1+i-1]=w2[i];
gt(h,h+l1-1,l,mid);gt(h+l1,t,mid+1,r);
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++){
scanf("%d%d%d%lld",&w[i].tp,&w[i].x,&w[i].y,&w[i].z);w[i].id=i;
if(w[i].tp==1) num[++gs]=w[i].z;
}
sort(num+1,num+gs+1);
gs=unique(num+1,num+gs+1)-num-1;
for(int i=1;i<=m;i++){
if(w[i].tp==1){
w[i].z=lower_bound(num+1,num+gs+1,w[i].z)-num;w[i].z=gs-w[i].z+1;
}//这里将第k大转化为第k小,在最后输出中再换回来
}
gt(1,m,1,gs);
sort(w+1,w+m+1,cmp);
for(int i=1;i<=m;i++){
if(w[i].tp==2) printf("%lld\n",num[gs-w[i].ans+1]);
}
return 0;
}