# zoj 2562 More Divisors（反素数）

More Divisors

Time Limit: 2 Seconds      Memory Limit: 65536 KB

Everybody knows that we use decimal notation, i.e. the base of our notation is 10. Historians say that it is so because men have ten fingers. Maybe they are right. However, this is often not very convenient, ten has only four divisors -- 1, 2, 5 and 10. Thus, fractions like 1/3, 1/4 or 1/6 have inconvenient decimal representation. In this sense the notation with base 12, 24, or even 60 would be much more convenient.

The main reason for it is that the number of divisors of these numbers is much greater -- 6, 8 and 12 respectively. A good quiestion is: what is the number not exceeding n that has the greatest possible number of divisors? This is the question you have to answer.

Input:

The input consists of several test cases, each test case contains a integer n (1 <= n <= 1016).

Output:

For each test case, output positive integer number that does not exceed n and has the greatest possible number of divisors in a line. If there are several such numbers, output the smallest one.

Sample Input:
10
20
100

Sample Output:
6
12
60


题意：给出一个数n，求n以内的一个因子个数最多的且大小最小的数。

(2+1)*(3+1)*(1+1)=24

10^16以内的数最多只需要前16个素数构造

AC代码：

#include <iostream>
#include <cmath>
#include <cstring>
#include <cstdio>
#include <queue>
#define ll long long

using namespace std;

const int prime[16] = {1,2,3,5,7,11,13,17,19,23,29,31,37,41,43,47};
ll n, minnum, maxsum;

void dfs(ll num, ll sum, ll k, int cnt)
{
if(sum > maxsum){
minnum = num;
maxsum = sum;
}
else if(sum == maxsum && num < minnum) minnum = num;
if(k > 15) return;
ll tmp = num;
for(int i = 1; i <= cnt; i++)
{
tmp *= prime[k];
if(tmp > n) break;
dfs(tmp, sum * (i + 1), k + 1, i);
}
}
int main()
{
while(~scanf("%lld", &n))
{
minnum = n;
maxsum = 0;
dfs(1, 1, 1, 50);
printf("%lld\n", minnum);
}
return 0;
}


• 本文已收录于以下专栏：

举报原因： 您举报文章：zoj 2562 More Divisors（反素数） 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)