# poj 1811 Prime Test（素数判断）

Prime Test
 Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 27513 Accepted: 6874 Case Time Limit: 4000MS

Description

Given a big integer number, you are required to find out whether it's a prime number.

Input

The first line contains the number of test cases T (1 <= T <= 20 ), then the following T lines each contains an integer number N (2 <= N < 254).

Output

For each test case, if N is a prime number, output a line containing the word "Prime", otherwise, output a line containing the smallest prime factor of N.

Sample Input

2
5
10


Sample Output

Prime
2


题意：给出一个整数N(2 <= N < 254)，判断N是否为素数。
思路：用到miller_rabin的素数判断和pollard_rho的整数分解，详见《算法导论》第31章第31.8至31.9节
以下是网上找的代码：

#include <iostream>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <queue>
#include <ctime>

#define ll __int64

using namespace std;

const ll INF = pow(2.0, 60);
const int TIME = 12;
ll minf;
ll gcd(ll a, ll b)
{
return b == 0 ? a : gcd(b, a % b);
}
ll mod_mult(ll a, ll b, ll n)      //计算(a*b)%n
{
ll ret = 0;
a %= n;
while(b)
{
if(b & 1)
{
ret += a;
if(ret >= n) ret -= n;
}
a <<= 1;
if(a >= n) a -= n;
b >>= 1;
}
return ret;
}
ll mod_exp(ll a, ll b, ll n)         //计算(a^b)%n
{
ll r = 1;
a %= n;
while(b)
{
if(b & 1)
r = mod_mult(r, a, n);
a = mod_mult(a, a, n);
b >>= 1;
}
return r;
}
bool Witess(ll a, ll n)        //以a为基对n进行Miller测试并实现二次探测
{
ll m, x, y;
int i, j = 0;
m = n - 1;
while(m % 2 == 0)
{
m >>= 1;
j++;
}
x = mod_exp(a, m, n);
for(i = 1; i <= j; i++)
{
y = mod_exp(x, 2, n);
if(y == 1 && x != 1 && x != n - 1)         //二次探测
return true;
x = y;
}
if(y != 1) return true;
return false;
}
bool miller_rabin(int times,ll n)
{
ll a;
if(n == 1) return false;
if(n == 2) return true;
if(n % 2 == 0) return false;
srand(time(NULL));
for(int i = 1; i <= times; i++)
{
a = rand() % (n - 1) + 1;
if(Witess(a, n)) return false;
}
return true;
}
ll pollard_rho(ll n, int c)
{
ll i = 1, k = 2, x, y, d;
srand(time(NULL));
x = rand() % n;
y = x;
while(true)
{
i++;
x = (mod_mult(x, x, n) + c) % n;
d = gcd(y - x, n);
if(d > 1 && d < n) return d;
if(y == x) return n;
if(i == k)
{
y = x;
k <<= 1;
}
}
}
void get_small(ll n, int c)
{
ll m;
if(n == 1) return;
if(miller_rabin(TIME, n))
{
if(n < minf) minf = n;
return;
}
m = n;
while(m == n) m = pollard_rho(n, c--);
get_small(m, c);
get_small(n / m, c);
}
int main()
{
int t;
ll n;
scanf("%d", &t);
while(t--)
{
minf = INF;
scanf("%I64d", &n);
if(miller_rabin(TIME, n)) printf("Prime\n");
else
{
get_small(n, 240);
printf("%I64d\n", minf);
}
}
return 0;
}


#### 【数论】poj1811Prime Test

2015-08-01 21:14:03

#### POJ 1811 Prime Test【素数判定与大数分解】

2017-03-29 16:45:14

#### Prime Test POJ - 1811 miller素数判断&pollar_rho大数分解

2017-08-25 11:09:58

#### POJ 1811 Prime Test (大素数判断和素因子分解）

2015-09-09 13:40:41

#### POJ 1811 Prime Test（大素数判断和素因子分解）

2017-08-05 00:45:06

#### POJ Prime Test

2013-10-19 12:40:54

#### POJ 1811 Prime Test

2009-11-27 21:21:00

#### POJ, 1811 Prime Test

2017-03-29 09:19:31

#### POJ 1811 Prime Test

2011-07-26 20:14:19

#### poj 1811 Prime Test

2010-08-26 22:56:00