【POJ 3259 Wormholes】+ Bellman-Ford

Description

While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ’s farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..N, M (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.

As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .

To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.

Input

Line 1: A single integer, F. F farm descriptions follow.
Line 1 of each farm: Three space-separated integers respectively: N, M, and W
Lines 2..M+1 of each farm: Three space-separated numbers (S, E, T) that describe, respectively: a bidirectional path between S and E that requires T seconds to traverse. Two fields might be connected by more than one path.
Lines M+2..M+W+1 of each farm: Three space-separated numbers (S, E, T) that describe, respectively: A one way path from S to E that also moves the traveler back T seconds.
Output

Lines 1..F: For each farm, output “YES” if FJ can achieve his goal, otherwise output “NO” (do not include the quotes).
Sample Input

2
3 3 1
1 2 2
1 3 4
2 3 1
3 1 3
3 2 1
1 2 3
2 3 4
3 1 8
Sample Output

NO
YES

Hint

For farm 1, FJ cannot travel back in time.
For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.

题意 : 先给出点的个数 N,以及正权双向边个数M,和负权单向边个数K,接下来M行给出a,b两条边的权值c此时建边要双向,在接下K行给出a,b两条边的权值注意此时建边要单向切权值为负即 -c

思路 :用Bellman搜索图的负权边,很巧妙的把物理学的负空间的概念迁移了一下,不过这过程也很自然,不怎么难想,写得很快

我也是第一次接触权值有负的图论题,也是初次接触Bellman-Ford算法,很好理解,百度下很详细,找不到好的讲解的话,我这推荐几篇 : http://blog.csdn.net/wyk1823376647/article/details/52739940

AC代码 :

#include<cstdio>
#include<algorithm>
using namespace std;
struct node{
   int x,y,z;
}st[5310];
int dis[510],nl;
int BellmanFord(int pl)
{
    int i,j,kl;
    for(i = 1 ; i <= nl ; i++)
        dis[i] = 100011;
    dis[1] = 0;
    for(i = 1 ; i <= nl - 1 ; i++){
        kl = 1;
        for(j = 1 ; j <= pl ; j++)
            if(dis[st[j].x] > dis[st[j].y] + st[j].z){
                dis[st[j].x] = dis[st[j].y] + st[j].z;
                kl = 0;
        }
        if(kl)
            break;
    }
    for(i = 1 ; i <= pl ; i++)
        if(dis[st[i].x] > dis[st[i].y] + st[i].z)
            return 0;
    return 1;
}
int main()
{
    int T,N,M,i,a,b,c;
    scanf("%d",&T);
    while(T--)
    {
        int pl = 0;
        scanf("%d%d%d",&nl,&N,&M);
        for(i = 1 ; i <= N ; i++){
            scanf("%d%d%d",&a,&b,&c);
            st[++pl].x = a;
            st[pl].y = b;
            st[pl].z = c;
            st[++pl].x = b;
            st[pl].y = a;
            st[pl].z = c;
        }
        for(i = 1 ; i <= M ; i++){
            scanf("%d%d%d",&a,&b,&c);
            st[++pl].x = a;
            st[pl].y = b;
            st[pl].z = -c;
        }
        if(BellmanFord(pl))
            printf("NO\n");
        else
            printf("YES\n");
    }
    return 0;
}
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值