关闭

多任务深度学习论文阅读

Deep Learning Face Representation by Joint Identification-Verification这篇论文主要是针对人脸识别,分为两个任务: face identification task face verification task 前者目的是增大类间间距,即不同人的差距;后者是为了减小类内差距,即相同人在不同环境下的差异。 在网络的设计中,最终生成的...
阅读(510) 评论(0)

cuda 学习 | GPU的归约、扫描、直方图算法

两种复杂度 Step complexity 即步骤复杂度,完成一个工作需要多少步。 Work complexity 即工作复杂度,完成工作一共需要的工作量。 对于并行计算,由于可以采取多线程的运算,可以对每一步的运算时间进行很大的缩减。但对于整个程序,有时需要分很多步骤,后续步骤需要等待前面的步骤处理完得到结果才能继续执行。因此有时步骤的复杂度反而决定了整个程序运行的时间。Reduce 归约归约...
阅读(575) 评论(0)

cuda 学习 | GPU硬件与并行通信模式

通信方式通信方式主要以课程截图为主……Map 这是一种一一对应的方式。Gather 多对一的方式。Scatter 一对多的方式。Stencil 模板,多对多的方式。 图中左中为输入,左下为输出,不同颜色为不同线程的读取、输出位置。Transpose 转置操作,改变形状、顺序等。 进行合理的顺序改变在数据读取速度上会提升速度。GPU结构从大到小来说,结构为: Kernel -》 B...
阅读(593) 评论(0)

cuda 并行计算 | GPU 编程模型

udacity上的课程,有nvidia的工程师上课,比较基础也比较易懂。CUDA程序的特点相比于CPU的单线程串行计算,CUDA程序的多线程对速度提升有很大的作用。 这就是优化时间与优化吞吐量的区别。 程序编译后分别在CPU和GPU上运行; CPU是主机(host),GPU是从机(device); 各自有各自的存储位置,不能相互访问。 GPU不能发起运算,只能相应运算 CUDA程序的执行步骤 CP...
阅读(742) 评论(0)

从零开始配置深度学习环境:ubuntu16.04 cuda opencv caffe 需要的库

有一台空闲的服务器,上面有一块K40的卡,原来的系统进不去了可以拿来搞一搞。。nvidia驱动这一步好像可以跳过,因为之后安装cuda能选择是否安装驱动。 上官网NVIDIA Driver Downloads找自己显卡的型号,看看适合的驱动编号是什么。 之后输入命令:sudo add-apt-repository ppa:graphics-drivers/ppa sudo apt-get u...
阅读(995) 评论(0)

Mask RCNN 论文阅读

mask rcnn 是对Faster R-CNN的功能上的提升,速度上仍然在200ms(5fps)。Faster R-CNN回顾Faster R-CNN由两个阶段组成。 第一阶段为RPN网络,提出候选对象bounding boxes。第二阶段,本质上是Fast R-CNN,从每个候选框中提取使用RoIPool的特征,并执行分类和边界框回归。 Mask R-CNN特点Mask R-CNN在概念上很简单...
阅读(3993) 评论(0)

Tensorflow 多任务学习

之前在caffe上实现了两个标签的多任务学习,如今换到了tensorflow,也想尝试一下,总的来说也不是很复杂。建立多任务图多任务的一个特点是单个tensor输入(X),多个输出(Y_1,Y_2...)。因此在定义占位符时要定义多个输出。同样也需要有多个损失函数用于分别计算每个任务的损失。具体代码如下:# GRAPH CODE # ============# 导入 Tensorflow impo...
阅读(1953) 评论(0)

TensorBoard 在1.0 版本后的使用

注意:在阅读本文之前,请务必更新你的浏览器。Chrome大法好! 数据、模型可视化是TensorFlow的一项重要的功能,安装后自带的TensorBoard是一个很强大的工具,但目前的教程大多都停留在TensorFlow 1.0 版本之前,一些函数已经改名无法使用,因此写一篇比较新的使用说明。主要区别如果之前使用过TensorBoard,其实只是换一下函数名就可以了。在Github上新版本说明文档...
阅读(5232) 评论(0)

TensorFlow 新手入门

刚装上TensorFlow,还是不太会用,主要去官网还要翻墙太麻烦了。。随手翻一下教程备用初识TensorFlow初期准备: 安装好TensorFlow 知道如何在Python中编程 懂一点数组知识 最好了解机器学习(不必要) TensorFLow提供多种APIs,从低级到高级,满足不同使用需求,越高级越容易学习和使用。下面的一些模型都可以用tf.contrib.learn高级API实现。Tenso...
阅读(868) 评论(0)

Udacity Linux 命令行基础 Shell 入门

Linux 命令行基础 Shell 入门 这上面讲的有点太简单了,总结一下备忘。Get into the shell错误信息输入包括单引号’、圆括号(、大括号{ 输出有>(右尖括号),需要补全。 ctrl+c退出简单指令目录文件ls下载curl http://udacity.github.io/ud595-shell/stuff.zip -o things.zip安装Ubuntu and D...
阅读(522) 评论(0)

tensorflow 在windows下安装

蹭的深度学习课程,老师推荐用tensorflow做作业,因此先接触一下吧,不用来做项目,先熟悉一下语句。 相比于caffe,tensorflow没有复杂的编译过程,简单的可以把它看成一个python的库。所以安装起来也是很简单的~环境准备其实环境比最后的安装更重要= =也遇到了一些小问题。AnacondaTensorflow基于python,而Anaconda提供了较好的python环境,特别是建...
阅读(2879) 评论(0)

Generative Adversarial Nets

相比于传统的识别、分类工作,生成对抗网络以一种逆向的思维,让计算机有了一定的创造能力。这种创造在实际中有更大的意义,甚至在复杂的工作中也能取得良好的效果。首先看一下最初的Goodfellow的工作:Generative Adversarial Nets。介绍关于GAN,论文中有一个很恰当的比喻: The generative model can be thought of as analogou...
阅读(448) 评论(0)

Caffe python layer 的自定义

还是caffe的自定义层问题。相比于c,python的自定义层更为简单:代码少、外部文件少、方便执行。因此用这种方法实现有利于开发和实验。准备首先还是要记得在编译的时候加上WITH_PYTHON_LAYER的选项,如果没有加可以先make clean删除编译后的文件,再重新编译。WITH_PYTHON_LAYER=1 make && make pycaffe如果出现layer_factory.hpp...
阅读(2899) 评论(9)

GoogleNet :Going deeper with convolutions 论文阅读

这次读旁边拿了纸笔记录,感觉还是方便一些,之后再写篇博客总结一下加深印象。问题引出Going deeper考虑的问题: 不在于训练数据、模型大小,希望得到新的模型结构; 可以用于移动计算,需要考虑功率、内存使用等问题。 NIN借鉴到的1*1卷积核: 降维(当然也可以升维),减少参数和计算; 增加深度、宽度,而没有明显性能损失。 目前提高深度神经网络性能的方法: 加大size→ 缺点: 容易造成过...
阅读(463) 评论(0)

scrapy中遇到的问题与解决

Scrapy,Python开发的一个快速,高层次的屏幕抓取和web抓取框架,用于抓取web站点并从页面中提取结构化的数据。 因为好像这个用的比较多,所以看看用这个框架该怎么写爬虫。其实不难,但是中间出了很多神奇的小问题。 输出不正确、改代码结果不变?其实是因为反复使用命令scrapy crawl spider -o 1.json时候,增加的输出数据不会覆盖,而是继续往后面添加。request不...
阅读(1274) 评论(0)
54条 共4页首页 上一页 1 2 3 4 下一页 尾页
    个人资料
    • 访问:77399次
    • 积分:1233
    • 等级:
    • 排名:千里之外
    • 原创:44篇
    • 转载:5篇
    • 译文:5篇
    • 评论:18条
    文章分类
    最新评论
    小一一的CSDN