关闭

spark 2.1.0安装指南完整版

Spark的资料非常多,但是完整介绍Spark安装的资料却非常少见,本文就是记录一下安装配置Spark2.1.0的过程,希望能对大家有所帮助。包括安装JDK、Scala、Python、Hadoop、Spark,并且修改Spark源码文件,使pyspark其可以与Python 3.6配合使用。...
阅读(3727) 评论(1)

在Word2007中加入带行号和高亮显示的代码段

我们在编写Word文档时,希望也能有CSDN博客中的代码插件的效果,可以插入带有行号和高亮显示的代码,然而这却不太容易做到。要做到这一点,有两种方式,一种是借助Notepad++,将内容导出为HTML格式,然后插入到Word中。这种方式的缺点是不能带行号,这对于想要解释代码来说,非常不方便。还有一种方式,就是我们通过Word中的VBA语言进行编程,来自动对代码段进行高亮显示和添加行号,这种方式可以...
阅读(808) 评论(0)

Ubuntu下LAMP环境配置

对于新安装的Ubuntu系统,首先需要更新apt源,运行如下命令:sudo apt-get update完成后,先安装编译工具:sudo apt-get install build-essential安装Apache2:sudo apt-get install apache2在缺省情况下,Apache2的网页文件目录为/var/www/html,我们一般都习惯于将其设置为/var/www,所以我们...
阅读(467) 评论(0)

人工智能自动代码生成3---数据库获取代码实现1

我们先从最简单的自动代码生成场景开始,先用不怎么智能的方法来实现这些基本功能。我们在这一节中,将使用Java中的JDBC技术,实现对数据库内容的增删改查操作,同时使用PHP中的Mysqli技术,实现同样的功能,通过这个具体的实例,让大家感觉一下,实际中的代码生成,究竟可以实现什么功能。我们在具体讲数据库获取代码生成之前,我们先来熟悉一下Jinja2的语法知识。我们以Jinja2应用的典型场景为例,...
阅读(1801) 评论(0)

人工智能自动代码生成2---环境搭建

在进行具体的开发之前,我们需要选择具体采用的实现技术,并搭建开发环境。我们在这里选择Python 3.x,因为我们会将人工智能、机器学习的算法应用到代码生成中,而在人工智能和机器学习领域,Python无疑是最流行的语言,因此我们选择Python语言有利于我们在后期引入人工智能和机器学习算法。其次是选择开发平台,对于软件开发而言,比较理想的开发平台,当然是Linux系统,例如Ubuntu系统,再有就...
阅读(1135) 评论(0)

人工智能自动代码生成1---前言

代码自动生成技术的历史非常长,人们采用过各种代码自动生成系统,取得了程度不同的成功。例如各种IDE中的Wizard,可以视为被动式代码生成的成功例子,目前还在各种IDE中广泛存在。在诸如PHP、Python的Web开发中,大量使用的模板技术,如Smarty和Mako,也可以视作主动代码生成的一个成功案例。目前在很多大公司内部,也都或多或少的应用了代码自动生成技术。但是这些成功应用的实例,虽然在各自...
阅读(825) 评论(0)

微信小程序实战教程1503---生成二维码

在微信小程序中,如果我们可以自己将指定内容生成二维码,出示给别人,将是一个比较有用的功能。但是微信小程序API中,目前暂时还没有这个功能,但是我们可以通过变通的方法,来实现这一功能。本文所提到的方法,是受到这篇博文的启发(http://blog.csdn.net/sinat_17775997/article/details/53608479),但是具体实现细节有些不同,读者可以结合那篇博文以及配套...
阅读(1202) 评论(0)

深度学习算法实践16---限制性波尔兹曼机(RBM)原理1

我们目前的讨论的神经网络,虽然学习算法不同,但基本上架构还是相同的,就是都是分层网络,即神经元按层进行组织,层内神经元无连接,层间神经元间有连接。我们在这篇博文中,将讨论一种非常不同的神经网络,这类神经网络是由没层次关系的神经元全连接网络进化而来,采用有别于梯度下降算法进行学习的网络。这类网络首先起源于Holpfield网络,这是一种全联接的网络,神经元之前进行全连接,我们可以给这个网络定义一个能...
阅读(2839) 评论(2)

深度学习算法实践15---堆叠去噪自动编码机(SdA)原理及实现

在上一篇博文中,我们讨论了去噪自动编码机(dA),并讨论了Theano框架实现的细节。在本节中,我们将讨论去噪自动编码机(dA)的主要应用,即组成堆叠自动编码机(SdA),我们将以MNIST手写字母识别为例,用堆叠自动编码机(SdA)来解决这一问题。...
阅读(3823) 评论(0)

ubuntu环境下Theano开发环境搭建

在Ubuntu系统中安装Python 3.x,并配置Theano开发环境。...
阅读(1238) 评论(0)

深度学习算法实践14---去噪自动编码机(dA)的Theano实现

在明白了去噪自动编码机(dA)的理论之后,在本篇博文中,我们将讨论用Theano来实现一个去噪自动编码机。通过上篇博文的讨论,我们知道去噪自动编码机(dA)工作主要有四步组成:第一步是向原始输入信号中加入随机噪音(使原始信号在某些维度上值为零);第二步是将加入噪音的信号输入网络,经过编码器部分,在中间层生成输入信号的压缩信号;第三步是经过解码器层,在输出层得到输出信号;第四步将输出信号与原始输入信...
阅读(2876) 评论(0)

深度学习算法实践13---去噪自动编码机(Denosing Autoencoder)

截至目前为止,我们所讨论的神经网络技术,感知器模型、BP网络、多层卷积神经网络(CNN),都可以视为前馈神经网络的变形,都会采用信号前向传播,误差反向传播修正连接权值,采用有监督学习方式,解决样本分类问题。在这一篇博文,我们将介绍稍微不同的神经网络架构,即被称为自动编码机(Autoencoder)。与前述我们所讨论的神经网络不同,自动编码器(Autoencoder)属于非监督学习,不需要对训练样本...
阅读(5512) 评论(0)

深度学习算法实践12---卷积神经网络(CNN)实现

在搞清楚卷积神经网络(CNN)的原理之后,在本篇博文中,我们将讨论基于Theano的算法实现技术。我们还将以MNIST手写数字识别为例,创建卷积神经网络(CNN),训练该网络,使识别误差达到1%以内。...
阅读(4724) 评论(0)

深度学习算法实践11---卷积神经网络(CNN)之卷积操作

卷积神经网络(CNN)主要特性有:稀疏连接和权值共享、卷积操作、池化。在前一篇博文中我们已经讨论了稀疏连接和权值共享,在本篇博文中,我们将介绍卷积操作和池化。正是由于对图像进行卷积操作,卷积神经网络才得以其名,可见卷积操作是其核心。在这篇博文中,我们将讨论卷积操作的实现其及物理含义。...
阅读(4294) 评论(2)

深度学习算法实践10---卷积神经网络(CNN)原理

其实从本篇博文开始,我们才算真正进入深度学习领域。在深度学习领域,已经经过验证的成熟算法,目前主要有深度卷积网络(DNN)和递归网络(RNN),在图像识别、视频识别、语音识别领域取得了巨大的成功,正是由于这些成功,能促成了当前深度学习的大热。与此相对应的,在深度学习研究领域,最热门的是AutoEncoder、RBM、DBN等产生式网络架构,但是这些研究领域,虽然论文比较多,但是重量级应用还没有出现...
阅读(6162) 评论(3)

从王宝强离婚股权之争看国内公司持股平台

近日王宝强离婚新闻可谓出尽风头,除了关注扑朔迷离的婚外情之外,人们对王宝强巨额财产的分割问题也产生了浓厚兴趣。因为依据现有法律,婚内出轨并不能作为少分或不分资产的有力依据,很多人觉得王宝强这回可能要大放血了。 但是傻根王宝强并不傻,而且可以说是相当精明,这是因为王宝强未雨绸缪建立了公司持股平台。...
阅读(1953) 评论(2)

深度学习算法实践9---用Theano实现多层前馈网络

我们到目前为止,使用逻辑回归模型已经可以对简单的线性可分问题进行了研究,不仅对MNIST手写数字识别样本集进行了训练和识别,我们还对二维平面上的点是否在y=x这条直线上进行了判断,有了这两个例子,尤其是第二个例子,读者应该可以将逻辑回归模型应用到自己的项目中了。虽然逻辑回归问题不能解决线性不可分问题,但是对于很多线性不可分问题,还是可以找到一个尽量好的超平面,得到令人满意的分类结果。由于逻辑回归算...
阅读(2256) 评论(0)

深度学习算法实践8---BP算法详解

BP算法是关于误差的反向传播算法,就是从输出层开始,将结果与预期结果相比较,求出误差,然后按照梯度最大下降方向,调整神经元的联接权值,然后依次逐层调整各层之间的连接权值,对于批量学习方式而言,不断重复上述过程,直到误差达到足够小时为止。对于输出层而言,我们可以直接使用在上一篇博文中关于感知器模型的算法,BP算法的难点在于,如何处理隐藏层,因为隐藏层没有正确的输出信息用来计算误差。下面我们将从输出层...
阅读(3532) 评论(0)

深度学习算法实践7---前向神经网络算法原理

在本文中,我们对感知器模型的算法进行了推导,为我们对多层前馈网络(BP)的误差反向传播算法打下基础。...
阅读(3529) 评论(2)

深度学习算法实践6---逻辑回归算法应用

在上篇博文中,我们介绍了深度学习算法的实现,并且以MNIST手写数字识别为例,验证了该算法的有效性。但是我们学习逻辑回归算法的目的是解决我们的实际问题,而不是学习算法本身。逻辑回归算法在实际中的应用还是很广泛的,例如在医学领域的疾病预测中,我们就可以列出一系疾病相关因素,然后根据某位患者的具体情况,应用逻辑回归算法,判断该患者是否患有某种疾病。当然,逻辑回归算法还是有局限性的,其比较适合于处理线性...
阅读(2506) 评论(0)
133条 共7页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:1059259次
    • 积分:12140
    • 等级:
    • 排名:第1230名
    • 原创:133篇
    • 转载:0篇
    • 译文:0篇
    • 评论:1639条
    我的课程
    博客专栏
    最新评论