Python量化交易笔记---16.方差分析

方差分析是一种多变量之间关系的定性分析方法,通过研究多个变量之间存在的关系,我们可以提高预测的准确性。 1.概述 在股票研究中,我们经常按行业版块来进行研究,假设不同行业间收益率为相互独立的,我们想要知道化工行业与金融行业相比,收益率是高还是低。在这个问题中,行业版块我们称之为因子(Factor)...

2019-02-11 11:20:44

阅读数 50

评论数 0

Python量化交易笔记---15.推断统计

推断统计包括参数估计和假设检验,参数估计包括点估计和区间估计。 1.概述 对于给定的随机变量,我们可以根据以前的经验或统计方法,确定其所遵从的概率分布类型,例如正态分布,然后就可以根据收集到的数据,来估计概率分布模型中的参数,以正态分布为例,就可以估计出均值μ\muμ和方差σ2\sigma ^{2...

2019-02-10 20:22:52

阅读数 132

评论数 0

python量化交易笔记---14.随机变量

随机变量用大写字母来表示,如XXX,其具体的观测值用小写字母来表示,如xxx。我们希望通过观测到的结果,来推断出随机变量的真实分布。根据随机变量的取值,分为离散随机变量和连续随机变量,在量化交易中,绝大多数数据都是连续随机变量。 1.概率与概率分布 1.1.离散型随机变量 假设离散型随机变量XXX...

2019-02-09 19:48:17

阅读数 110

评论数 0

python量化交易笔记---13.描述性统计

统计分为描述统计和推断统计,我们在这一章里,主要讲解描述性统计。我们用到的数据如下所示: images/c13f004.png 上图中,gsyh代表工商银行收益率,pfyh代表浦发银行收益率,zglt代表中国联通收益率,我们仅以工商银行收益为例计算各个统计量。 1.频数分布 我们以2014年...

2019-02-09 13:52:10

阅读数 52

评论数 0

python量化交易笔记---10.numpy库使用

numpy是python中一个重要的科学计算库,是当前机器学习和深度学习的基础库之一。在numpy中最重要的就是多维数组,我们在这里重点向大家介绍一下多维数组的用法。 创建多维数组 range函数直接创建 采用range函数,创建下标由零开始的一维数组(其后可以通过reshape变为多维数组),数...

2019-02-08 17:48:10

阅读数 97

评论数 0

自己动手写区块链Golang版---1.极简区块链

实现区块链的语言有很多种选择,如C++、Java、Python和Go。采用C++语言理由很简单,比特币和2018年中上线的EOS就是基于C++语言。选用Java是因为长期在编程语言排行榜上占据第一的位置。Python语言是现在人工智能和深度学习第一首选语言,是近来年最热的语言,没有之一。但是这个系...

2019-01-06 23:12:17

阅读数 97

评论数 0

加密货币量化交易策略研究

同一市场同一币种 同一市场不同币种 我们假设初始状态下资产如下所示: 货种 金额 BTC 100 ETH 1000 USDT 800 我们假设某一时刻的价格为: 源币种 目的币 汇率 备注 BTC USDT 3400 ETH USDT 110 ...

2018-12-26 09:50:57

阅读数 121

评论数 0

Spring Cloud微服务实战---1.9.微服务架构容错处理

在微服务架中,所有功能均通过微服务来提供,如果其中某个关键微服务出现问题,如响应时间过长,那么所有调用这个微服务的微服务都会变慢,由于调用者微服务变慢,进一步会使其他更广泛的微服务变慢,最终整个系统可能会因为一个微服务出现问题,而使整个微服务架构出现故障。为了防止这种现象的发生,我们可以使用Spr...

2018-12-13 14:29:24

阅读数 128

评论数 0

Spring Cloud微服务实战---1.8.Eureka下的服务调用

在上一节中,我们成功的将微服务注册到Eureka中,并实现了Eureka的高可用性,在这一节中,我们将实现一个微服务使用者程序,通过查询Eureka找到微服务,然后调用根据一定的负载均衡算法,调用相应的微服务实例,完成自己所需的功能。 ...

2018-12-13 11:16:20

阅读数 114

评论数 0

Spring Cloud微服务实战---1.7.Eureka的微服务注册与管理

在微服务架构中,服务的注册与管理是一项特别重要的基础功能。因为在微服务架构下,随着业务的发展,微服务的数量会越来越多,而且微服务集群规模、微服务的位置、微服务的命名等,都需要维护,如果以手工方式维护的话,将是非常困难的,所以需要使用微服务注册与管理工具。在Spring Cloud中,我们采用Eur...

2018-12-11 18:53:16

阅读数 125

评论数 0

Spring Cloud微服务实战---1.6.微服务监控

我们现在已经可以基于Spring Boot来开发微服务了,但是由于我们将原来单体应用打散,形成众多的微服务,微服务之间相对独立,而且每个微服务都可能存在多个实例,这对运维人员来说,想管理好这些微服务的难度很大。 ...

2018-12-10 13:51:10

阅读数 120

评论数 0

Spring Cloud微服务实战---1.5.测试先行的开发策略

为了提高软件开发质量,我们需要对所开发的功能进行单元测试,在Spring Boot中,进行单元测是非常容易的。在开发过程中,认真准备单元测试用例,不仅可以保证代码质量,也便于进行回归测试。今后在修改或代码重构时,通过回归测试,可以保证修改和代码重构的正确性。 ...

2018-12-10 10:44:04

阅读数 118

评论数 0

Spring Cloud微服务实战---1.4.JPA与JDBC协同

我们知道,如果采用领域驱动开发(DDD)的话,采用JPA技术,会非常方便。但是对于复杂的多表联合查询,使用JPA技术就比较费力了。为了解决复杂SQL查询问题,很多项目采用了MyBatis。但是Spring提倡大家使用JPA,对MyBatis技术实际上是有一点儿抵制的。我们在实际项目中,采用数据库增...

2018-12-07 14:00:36

阅读数 138

评论数 0

Spring Cloud微服务实战---1.3.使用Mysql数据库

在本节中,我们将在前一节微服务的基础上,将数据库从内存数据库H2,转换为我们在项目中经常使用的Mysql,同时我们将采用普通的增删改操作采用JPA,复杂多表查询直接使用JDBC的方式。 我们首先来设置Mysql数据库,我们首先建立数据库和用户,如下所示: create database MseDb...

2018-12-07 00:15:24

阅读数 1695

评论数 5

Spring Cloud微服务实战---1.2.采用HTTPS协议

当前主流网站基本都开始支持HTTPS协议了,对于电商网站来说,由于对安全性的要求还是比较高的,所以支持HTTPS协议是非常必要的。在本节中,我们将把我们在上一节中开发的微服务,启动在8443这个HTTPS的协议上。 我们首先需要生成一个证书文件,因为目前我们是在开发阶段,我们可以使用JDK中自带的...

2018-12-06 17:33:37

阅读数 181

评论数 0

Spring Cloud微服务实战---1.1.配置开发环境

随着应用系统的功能越来越复杂,应用系统的复杂度也越来越大,传统的基于单体应用模式,在实践中遇到了非常大的问题,微服务架构在此背景下应运而生。由于微服务架构还比较新,对开发团队的要求非常高,所以实际中还没有得到广泛的应用。而随着Spring Cloud的推出和成熟,集成了微服务架构所需的服务,大大降...

2018-12-06 16:54:41

阅读数 169

评论数 0

深度学习量化交易---0.4.获取行情数据

在本节中,我们将从交易所(huobipro)读取币对BTC/USDT的价格信息,由于交易所会进行限速,我们每隔100毫秒读取一次价格数据,取出我们训练长短时记忆网络(LSTM)需要的数据信息。代码如下所示: @staticmethod def get_tickers(exchang...

2018-11-29 19:19:54

阅读数 185

评论数 0

深度学习量化交易---0.3.加密货币交易所API

普通人想进行量化交易,存在许多障碍,最大的问题就是目前股票交易,不对个人开放自动交易API接口,无法进行自动化交易。虽然期货可以获得自动化交易接口,但是期货一方面大家不太熟悉,另外就是交易频率较低,自动化交易优势不明显。 相信近一段时间因为比特币价格雪崩,大家都关注到了加密货币。实际上加密货币交易...

2018-11-28 18:37:02

阅读数 251

评论数 0

深度学习量化交易---0.2.基于长短时记忆网络预测股票价格2

在上一篇博文中,我们介绍了长短时记忆网络的基本概念,在这一节中,我们将以长短时记忆网络(LSTM)为例,讲解深度学习算法在股票价预测中的应用。 我们要分析的数据如下所示: 各列依次为:股票代码、日期、开盘价、收盘价、最低、最高、交易量、金额、涨跌幅、第二天的最高价。 我们首先读入训练样本集,代码...

2018-11-28 10:58:06

阅读数 208

评论数 1

深度学习量化交易---0.2.基于长短时记忆网络预测股票价格1

在这一节中,我们将先向大家介绍长短时记忆网络(LSTM),然后详细讲解怎样使用长短时记忆网络(LSTM)来预测股票价格,为了避免人为因素干拢,我们还以上证综指为例来进行说明。 长短时记忆网络(LSTM) 股票交易数据是一种典型的时序信号,需要处理较长的时间序列,有时为了准确的进行股票价格预测,可能...

2018-11-27 14:59:41

阅读数 162

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭