Spark Streaming+kafka订单实时统计实现

原创 2017年06月01日 08:50:29
前几篇文章我们分别学习Spark RDD和PairRDD编程,本文小编将通过简单实例来加深对RDD的理解。

一.前期准备

开发环境:window7+eclipse+jdk1.7
部署环境:linux+zookeeper+kafka+hadoop+spark
本实例开发之前,默认已搭好了开发环境和部署环境,如果未搭建,可以参考本人相关大数据开发搭建博客。

二.概念理解

Spark Streaming 是Spark核心API的一个扩展,可以实现高吞吐量的、具备容错机制的实时流数据的处理。支持从多种数据源获取数据,包括Kafka、Flume、Kinesis 以及TCP sockets,从数据源获取数据之后,可以使用诸如map、reduce、join和window等高级函数进行复杂算法的处理。最后还可以将处理结果存储到HDFS、Databases和Dashboards等。实际上,你可以将流数据应用于Spark的机器学习和图形处理的算法上。

Spark Streaming处理的数据流图
Spark Streaming内部工作原理,其接收实时输入数据流,同时将数据划分成批次,然后通过Spark引擎处理生成按照批次的结果流。

Spark Streaming内部工作原理
Spark Streaming提供了表示连续数据流的、高度抽象的被称为离散流的DStream。DStream本质上表示RDD的序列。任何对DStream的操作都会转变为对底层RDD的操作。 

三.实例需求

通过Spark Streaming+kafka,实时统计订单的订单总数,所有订单价格数。

四.实例实现

4.1 订单实体order

package com.lm.sparkLearning.orderexmaple;

import java.io.Serializable;

/**
 * 简单订单
 * @author liangming.deng
 *
 */
public class Order implements Serializable {
	/**
	 * 
	 */
	private static final long serialVersionUID = 1L;
	//订单商品名称
	private String name;
	//订单价格
    private Float price;
    

	public Order() {
		super();
	}
    
	public Order(String name, Float price) {
		super();
		this.name = name;
		this.price = price;
	}
	public String getName() {
		return name;
	}
	public void setName(String name) {
		this.name = name;
	}
	public Float getPrice() {
		return price;
	}
	public void setPrice(Float price) {
		this.price = price;
	}
	@Override
	public String toString() {
		return "Order [name=" + name + ", price=" + price + "]";
	}
    
}


4.2 kafka订单生产者orderProducer

kafka生产者定时发送随机数量订单
package com.lm.sparkLearning.orderexmaple;

import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.Properties;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import com.fasterxml.jackson.databind.ObjectMapper;
import com.lm.sparkLearning.utils.ConstantUtils;
import com.lm.sparkLearning.utils.RandomUtils;

import kafka.javaapi.producer.Producer;
import kafka.producer.KeyedMessage;
import kafka.producer.ProducerConfig;

/**
 * 订单 kafka消息生产者
 * 
 * @author liangming.deng
 *
 */
public class OrderProducer {
	private static Logger logger = LoggerFactory.getLogger(OrderProducer.class);

	public static void main(String[] args) throws IOException {
		// set up the producer
		Producer<String, String> producer = null;
		ObjectMapper mapper = new ObjectMapper();

		try {

			Properties props = new Properties();
			// kafka集群
			props.put("metadata.broker.list", ConstantUtils.METADATA_BROKER_LIST_VALUE);

			// 配置value的序列化类
			props.put("serializer.class", ConstantUtils.SERIALIZER_CLASS_VALUE);
			// 配置key的序列化类
			props.put("key.serializer.class", ConstantUtils.SERIALIZER_CLASS_VALUE);

			ProducerConfig config = new ProducerConfig(props);
			producer = new Producer<String, String>(config);
			// 定义发布消息体
			List<KeyedMessage<String, String>> messages = new ArrayList<>();
			// 每隔3秒生产随机个订单消息
			while (true) {
				int random = RandomUtils.getRandomNum(20);
				if (random == 0) {
					continue;
				}
				messages.clear();
				for (int i = 0; i < random; i++) {
					int orderRandom = RandomUtils.getRandomNum(random * 10);
					Order order = new Order("name" + orderRandom, Float.valueOf("" + orderRandom));
					// 订单消息体:topic和消息
					KeyedMessage<String, String> message = new KeyedMessage<String, String>(
							ConstantUtils.ORDER_TOPIC, mapper.writeValueAsString(order));
					messages.add(message);
				}

				producer.send(messages);
				logger.warn("orderNum:" + random + ",message:" + messages.toString());
				Thread.sleep(10000);

			}

		} catch (Exception e) {
			e.printStackTrace();
			logger.error("-------------:" + e.getStackTrace());
		} finally {
			producer.close();
		}

	}
}


4.3 Spark Streaming+kafka订单实时统计OrderSparkStreaming

package com.lm.sparkLearning.orderexmaple;

import java.util.Arrays;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Map;
import java.util.Set;
import java.util.concurrent.atomic.AtomicLong;

import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka.KafkaUtils;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import com.fasterxml.jackson.databind.ObjectMapper;
import com.google.common.util.concurrent.AtomicDouble;
import com.lm.sparkLearning.utils.ConstantUtils;
import com.lm.sparkLearning.utils.SparkUtils;

import kafka.serializer.StringDecoder;
import scala.Tuple2;

/**
 * spark streaming统计订单量和订单总值
 * 
 * @author liangming.deng
 *
 */
public class OrderSparkStreaming {
	private static Logger logger = LoggerFactory.getLogger(OrderSparkStreaming.class);
	private static AtomicLong orderCount = new AtomicLong(0);
	private static AtomicDouble totalPrice = new AtomicDouble(0);

	public static void main(String[] args) {

		// Create context with a 2 seconds batch interval
		JavaStreamingContext jssc = SparkUtils.getJavaStreamingContext("JavaDirectKafkaWordCount",
				"local[2]", null, Durations.seconds(20));

		Set<String> topicsSet = new HashSet<>(Arrays.asList(ConstantUtils.ORDER_TOPIC.split(",")));
		Map<String, String> kafkaParams = new HashMap<>();
		kafkaParams.put("metadata.broker.list", ConstantUtils.METADATA_BROKER_LIST_VALUE);
		kafkaParams.put("auto.offset.reset", ConstantUtils.AUTO_OFFSET_RESET_VALUE);

		// Create direct kafka stream with brokers and topics
		JavaPairInputDStream<String, String> orderMsgStream = KafkaUtils.createDirectStream(jssc,
				String.class, String.class, StringDecoder.class, StringDecoder.class, kafkaParams,
				topicsSet);

		// json与对象映射对象
		final ObjectMapper mapper = new ObjectMapper();
		JavaDStream<Order> orderDStream = orderMsgStream
				.map(new Function<Tuple2<String, String>, Order>() {
					/**
					 * 
					 */
					private static final long serialVersionUID = 1L;

					@Override
					public Order call(Tuple2<String, String> t2) throws Exception {
						Order order = mapper.readValue(t2._2, Order.class);
						return order;
					}
				}).cache();

		// 对DStream中的每一个RDD进行操作
		orderDStream.foreachRDD(new VoidFunction<JavaRDD<Order>>() {
			/**
			 * 
			 */
			private static final long serialVersionUID = 1L;

			@Override
			public void call(JavaRDD<Order> orderJavaRDD) throws Exception {
				long count = orderJavaRDD.count();
				if (count > 0) {
					// 累加订单总数
					orderCount.addAndGet(count);
					// 对RDD中的每一个订单,首先进行一次Map操作,产生一个包含了每笔订单的价格的新的RDD
					// 然后对新的RDD进行一次Reduce操作,计算出这个RDD中所有订单的价格众合
					Float sumPrice = orderJavaRDD.map(new Function<Order, Float>() {
						/**
						 * 
						 */
						private static final long serialVersionUID = 1L;

						@Override
						public Float call(Order order) throws Exception {
							return order.getPrice();
						}
					}).reduce(new Function2<Float, Float, Float>() {
						/**
						 * 
						 */
						private static final long serialVersionUID = 1L;

						@Override
						public Float call(Float a, Float b) throws Exception {
							return a + b;
						}
					});
					// 然后把本次RDD中所有订单的价格总和累加到之前所有订单的价格总和中。
					totalPrice.getAndAdd(sumPrice);

					// 数据订单总数和价格总和,生产环境中可以写入数据库
					logger.warn("-------Total order count : " + orderCount.get()
							+ " with total price : " + totalPrice.get());
				}
			}
		});
		orderDStream.print();

		jssc.start(); // Start the computation
		jssc.awaitTermination(); // Wait for the computation to terminate
	}
}


4.4 实例实时结果




OrderProducer消息生产者

OrderSparkStreaming实时计算

五 代码地址

http://git.oschina.net/a123demi/sparklearning

版权声明:本文为博主原创文章,转载请注明原地址

Spark入门实战系列 spark编程模型--IDEA搭建及实战

【注】该系列文章以及使用到安装包/测试数据 可以在《倾情大奉送--Spark入门实战系列》获取 1、 安装IntelliJ IDEA IDEA 全称 IntelliJ IDEA,是java语言开发...

Spark-SQL--Thrift的安装及使用

安装及使用 配置hive-site.xml 在Spark-SQL的安装及使用.md的基础上,继续对hive-site.xml进行配置,如下 hive.metasto...

用Spark Streaming+Kafka实现订单数和GMV的实时更新

前言 在双十一这样的节日,很多电商都会在大屏幕上显示实时的订单总量和GMV总额。由于订单数量巨大,不可能每隔一秒就到数据库里进行一次SQL的数据统计,这时候就需要用到流式计算。本文将介绍一个...

Spark Streaming从Kafka自定义时间间隔内实时统计行数、TopN并将结果存到hbase中

一、统计kafka的topic在10秒间隔内生产数据的行数并将统计结果存入到hbase中 先在hbase中建立相应的表: create 'linecount','count' 开启kafka集群并建...

Spark Streaming从Kafka自定义时间间隔内实时统计行数、TopN并将结果存到hbase中

一、统计kafka的topic在10秒间隔内生产数据的行数并将统计结果存入到hbase中 先在hbase中建立相应的表: create 'linecount','count' 开启kafka...

Spark-Streaming与Spark-Sql整合实现实时股票排行---通过kafka列队数据

摘要:Apache Spark 是加州大学伯克利分校的 AMPLabs 开发的开源分布式轻量级通用计算框架。由于 Spark 基于内存设计,使得它拥有比 Hadoop 更高的性能(极端情况下可以达到 ...

Spark-Streaming与Spark-Sql整合实现实时股票排行---通过kafka列队数据

Spark-Streaming与Spark-Sql整合实现实时股票排行---通过kafka列队数据,前端数据通过 kafka队列传递,外层还有flume的实时收集。...

Spark-Streaming与Spark-Sql整合实现实时股票排行---通过kafka列队数据

Spark-Streaming与Spark-Sql整合实现实时股票排行---通过kafka列队数据,前端数据通过 kafka队列传递,外层还有flume的实时收集。 1、mvn构建工...

Kafka和Spark Streaming Java版本集成并将数据实时写入HBase

Kafka和Spark Streaming Java版本集成并将数据实时写入HBase mvn配置pom.xml
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Spark Streaming+kafka订单实时统计实现
举报原因:
原因补充:

(最多只允许输入30个字)