#include <cstdio>
#include <cstring>
#include <cmath>
#include <iostream>
#include <algorithm>
using namespace std;
#define LL __int64
const LL mod=112233;
LL a[14][14]={
{ 0, 1, 1, 1, 1, 1,1,0,0,0,0,0,0,0},
{ 1, 0, 1, 1, 1, 1,0,0,0,0,0,0,0,0},
{ 1, 1, 0, 1, 1, 1,0,0,0,0,0,0,0,0},
{ 1, 1, 1, 0, 1, 1,0,0,0,0,0,0,0,0},
{ 1, 1, 1, 1, 0, 1,0,0,0,0,0,0,0,0},
{ 1, 1, 1, 1, 1, 0,0,0,0,0,1,0,0,0},
{ 0, 0, 0, 0, 0, 0,0,1,0,0,0,0,0,0},
{ 0, 0, 0, 0, 0, 0,0,0,1,0,0,0,0,0},
{ 0, 0, 0, 0, 0, 0,0,0,0,1,0,0,0,0},
{ 0, 0, 0, 0, 0,-1,0,0,0,0,0,0,0,0},
{ 0, 0, 0, 0, 0, 0,0,0,0,0,0,1,0,0},
{ 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,1,0},
{ 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,1},
{-1, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0}
};
struct matrix{
LL f[14][14];
};
matrix mul(matrix a,matrix b)
{
matrix c;
LL i,j,k;
memset(c.f,0,sizeof(c.f));
for(k=0;k<14;k++)
{
for(i=0;i<14;i++)
{
if(!a.f[i][k])continue;
for(j=0;j<14;j++)
{
if(!b.f[k][j])continue;
c.f[i][j]=(c.f[i][j]+a.f[i][k]*b.f[k][j])%mod;
}
}
}
return c;
}
matrix pow_mod(matrix a,LL b)
{
matrix s;
memset(s.f,0,sizeof(s.f));
for(LL i=0;i<14;i++)
s.f[i][i]=1;
while(b)
{
if(b&1)
s=mul(s,a);
a=mul(a,a);
b=b>>1;
}
return s;
}
int main()
{
LL n;
while(cin>>n)
{
if(n%2==0)
{
cout<<0<<endl;
continue;
}
matrix e;
LL i,j,ans=0;
memcpy(e.f,a,sizeof(a));
/*for(i=0;i<14;i++)
{
for(j=0;j<14;j++)
printf("%3d",e.f[i][j]);
cout<<endl;
}*/
e=pow_mod(e,n/2);
for(i=0;i<6;i++)
for(j=0;j<6;j++)
ans=(ans+e.f[i][j])%mod;
cout<<(ans+mod)%mod<<endl;
}
return 0;
}
/*
题意:有n个格子,用六种颜色(1,2,3,4,5,6)去涂,要求涂出的图片对称,相邻格子颜色不同,不能出现颜色1-2-3-4-5-6这样连续
方法:
当n是偶数时,结果为0,。想一下对称,那么正当中两个格子颜色相同,与题意相驳
当n为奇数的时候,由于对称,只要考虑一半就可以了。找出所有不出现123456和654321(对称)的选择。
用矩阵解决:符合要求的14种状态(f[ai]表示以i结尾的符合要求的个数)
ai:1,2,3,4,5,6,12,123,1234,12345,65,654,6543,65432
可得到矩阵
{ 0, 1, 1, 1, 1, 1,1,0,0,0,0,0,0,0}
{ 1, 0, 1, 1, 1, 1,0,0,0,0,0,0,0,0}
{ 1, 1, 0, 1, 1, 1,0,0,0,0,0,0,0,0}
{ 1, 1, 1, 0, 1, 1,0,0,0,0,0,0,0,0}
{ 1, 1, 1, 1, 0, 1,0,0,0,0,0,0,0,0}
{ 1, 1, 1, 1, 1, 0,0,0,0,0,1,0,0,0}
{ 0, 0, 0, 0, 0, 0,0,1,0,0,0,0,0,0}
{ 0, 0, 0, 0, 0, 0,0,0,1,0,0,0,0,0}
{ 0, 0, 0, 0, 0, 0,0,0,0,1,0,0,0,0}
{ 0, 0, 0, 0, 0,-1,0,0,0,0,0,0,0,0}
{ 0, 0, 0, 0, 0, 0,0,0,0,0,0,1,0,0}
{ 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,1,0}
{ 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,1}
{-1, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0}
需要注意的是状态f[1]=f[2]+f[3]+f[4]+f[5]+f[6]-f[65432]
f[6]=f[1]+f[2]+f[3]+f[4]+f[5]-f[12345]
最后的结果是ans=f[1]+f[2]+f[3]+f[4]+f[5]+f[6]
*/
hdu 3893 Drawing Pictures 矩阵乘法
最新推荐文章于 2018-09-07 17:28:29 发布