定理题
knownothing
这个作者很懒,什么都没留下…
展开
-
hdu 1395 2^x mod n = 1 欧拉定理(当然可以直接暴力)
#include #include #include #include #include using namespace std; #define LL __int64 LL t,e[1000]; LL mod; LL euler_phi(LL n)//欧拉函数 { LL m=sqrt(n+0.5); LL ans=n,i; for(i=2;i<=m;i++)原创 2013-08-25 09:56:48 · 2380 阅读 · 1 评论 -
uva 1378 A Funny Stone Game 博弈/组合游戏 sg定理
#include #include #include #include #include #include using namespace std; #define maxn 30 #define maxv 100 //一开始把vis的范围开的跟sg的一样大。。。忘了sg函数值可能很大的 int sg[maxn],vis[maxv],a[maxn]; void init() {原创 2013-08-18 11:06:35 · 5202 阅读 · 0 评论 -
poj 3146/hdu 3304/uva 1384 Interesting Yang Hui Triangle Lucas定理
#include #include #include #include #include #include using namespace std; #define LL long long const int mod=10000; int main() { int p,n,tt=0; while(scanf("%d%d",&p,&n)!=EOF) {转载 2013-08-16 20:20:56 · 1993 阅读 · 0 评论 -
hdu 1848 Fibonacci again and again sg定理
#include #include #include #include #include using namespace std; int f[15]={1,2,3,5,8,13,21,34,55,89,144,233,377,610,987}; int sg[1001],vis[1001]; void init() { int i,j; sg[1]=1;sg[0]=0;原创 2013-08-27 12:13:34 · 1040 阅读 · 0 评论 -
UVA 10294 Arif in Dhaka (First Love Part 2) polya定理
#include #include using namespace std; #define LL long long LL n,t; double p,q; LL gcd(LL a,LL b) { return b==0?a:gcd(b,a%b); } void polya() { for(LL i=1;i<=n;i++) p+=pow(1.0*t,gcd(i原创 2013-08-07 14:08:20 · 1054 阅读 · 0 评论 -
hdu 4664 Triangulation/杭电多校2013第六场1010, SG定理+找规律
#include #include #include using namespace std; #define maxn 1000001 __int64 sg[300]={0,0,1,1,2,0,3,1,1,0,3,3,2,2,4,0,5,2,2,3,3,0,1,1,3,0,2,1,1, 0,4,5,2,7,4,0,1,1,2,0,3,1,1,0,3,3,2,原创 2013-08-08 18:05:14 · 818 阅读 · 0 评论 -
hdu 4678 Mine/杭电多校第八场1003 sg定理+找规律
#include #include #include #include #include using namespace std; #define maxn 1111 int e[maxn][maxn]; int n,m,k; int dir[8][2]={{1,0},{1,1},{1,-1},{0,1},{0,-1},{-1,0},{-1,1},{-1,-1}}; int ans; s原创 2013-08-16 09:51:39 · 1139 阅读 · 0 评论 -
hdu 1573 X问题 中国剩余定理(直接模板就OK了)
#include #include #include using namespace std; void gcd(int a,int b,int &d,int &x,int &y) {//a*x+b*y=gcd(a,b)=d;(x,y)为其一组整数解 if(!b){d=a;x=1;y=0;} else{ gcd(b,a%b,d,y,x);y-=x*(a/b);} } int原创 2013-08-25 10:21:34 · 3903 阅读 · 1 评论 -
lightoj 1319 - Monkey Tradition 中国剩余定理(孙子定理)+poj 2891 Strange Way to Express Integers
#include #include #include #include using namespace std; #define LL long long LL p[13],r[13],n; void gcd(LL a,LL b,LL &d,LL &x,LL &y)//扩展欧几里德算法求ax+by=gcd(a,b)当然一组整数解 {原创 2013-07-28 19:24:18 · 1506 阅读 · 0 评论 -
UVA 11754 Code Feat 中国剩余定理+普通枚举
#include #include #include #include #include #include using namespace std; #define LL long long #define limit 10000 LL n,m,x[11],y[11][111],a[11],M,c; vectore; setf[11]; void gcd(LL a,LL b,LL &d转载 2013-08-03 15:30:51 · 2144 阅读 · 0 评论 -
定理集锦1
定理1.费马小定理:费马小定理是数论中的一个重要定理,其内容为: 假如p是质数,且gcd(a,p)=1,那么 a^(p-1) ≡1(mod p) 假如p是质数,且a,p互质,那么 a的(p-1)次方除以p的余数恒等于1。 定理2.模乘法得逆:对于两个整数a,b,a/b是整数,且a和b除以mod得余数分别为aa,bb,则a/b除以mod得余数为(aa*bb^(-1))%mod,其中b^(-1)原创 2013-08-03 18:28:05 · 1287 阅读 · 0 评论