非代码集
knownothing
这个作者很懒,什么都没留下…
展开
-
poj/hdu/zoj矩阵连乘题集+题解代码 矩阵28练
你能全都做完,你的矩阵就小成了,1.hdu 1005 矩阵基础题 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1005题解代码链接:http://blog.csdn.net/a601025382s/article/details/102514232.hdu 1575 矩阵基础题题目链接:http://acm.hdu.ed原创 2013-08-24 10:46:29 · 3616 阅读 · 0 评论 -
hdu(杭电oj)第一页题目题解
第一页有几题没写,有机会补上(嗯,忘了就是另一回事了)。原创 2014-08-16 13:13:07 · 19485 阅读 · 0 评论 -
必要知识之STL
1.优先队列基本操作:empty() 如果队列为空返回真pop() 删除对顶元素push() 加入一个元素size() 返回优先队列中拥有的元素个数top() 返回优先队列对顶元素在默认的优先队列中,优先级高的先出队。在默认的int型中先出队的为较大的数。使用方法:头文件:#include 声明方式:1、普通方法:priority_que原创 2013-09-14 22:51:54 · 887 阅读 · 0 评论 -
常用公式
1.斐波那契数列:递推公式:f[n]=f[n-1]+f[n-2](n>=2),f[0]=0,f[1]=1;通项公式:2.占坑中。。。。。原创 2013-08-24 17:12:45 · 848 阅读 · 0 评论 -
算法集锦(普通版)
1.最长上升子序列(O(nlogn)时间复杂度)占坑中。。原创 2014-07-19 13:37:11 · 910 阅读 · 0 评论 -
目录
1.计算几何1.原创 2014-07-19 13:50:33 · 1206 阅读 · 0 评论 -
重要网站的链接
1.链接:rotating calipers homepage原创 2014-07-20 10:37:53 · 773 阅读 · 0 评论 -
辅助信息记录(快速读入等)
1 快速读入2.1 C++的数字快速读入inline int read() { char ch; bool flag = false; int a = 0; while(true) { ch = getchar(); if(ch >= '0' && ch <= '9' || ch原创 2014-08-10 15:19:07 · 637 阅读 · 0 评论 -
特殊信息记录
1.卡特兰数Catalan。原创 2014-07-18 14:42:55 · 636 阅读 · 0 评论 -
技巧的应用
1.向量积判断线段相交struct node{ double x1,y1,x2,y2;}e[maxn],f[maxn];double cross(double x1,double y1,double x2,double y2){ return x1*y2-x2*y1;}int find(node a,node b) //判断是否相交{ double c[原创 2013-09-13 19:35:46 · 727 阅读 · 0 评论 -
计算几何所用知识回收站
1.向量的叉积:向量a=(x1,y1),b=(x2,y2); 向量的叉积a×b=x1*y2-x2*y1; 当a×b>0时,b在a的逆时针方向,当a×b=0时,b与a共线,当a×b2.占坑。。。原创 2013-09-09 20:45:55 · 1081 阅读 · 0 评论 -
模板之数论大全1
1.扩展的欧几里德定理//拓展欧几里得定理,求ax+by=gcd(a,b)的一组解(x,y),d=gcd(a,b)void gcd(int a,int b,int &d,int &x,int &y){ if(!b){d=a;x=1;y=0;} else{gcd(b,a%b,d,y,x);y-=x*(a/b);}}2.求模乘法的逆//求得a在模n条件下的逆int原创 2013-08-03 19:18:55 · 1731 阅读 · 0 评论 -
定理集锦1
定理1.费马小定理:费马小定理是数论中的一个重要定理,其内容为: 假如p是质数,且gcd(a,p)=1,那么 a^(p-1) ≡1(mod p) 假如p是质数,且a,p互质,那么 a的(p-1)次方除以p的余数恒等于1。定理2.模乘法得逆:对于两个整数a,b,a/b是整数,且a和b除以mod得余数分别为aa,bb,则a/b除以mod得余数为(aa*bb^(-1))%mod,其中b^(-1)原创 2013-08-03 18:28:05 · 1287 阅读 · 0 评论 -
数学知识
1.生成函数(母函数)资料链接:http://baike.baidu.com/link?url=CrWhFUCWLlGPwaEsEE3nMQdw-80QWs-y0G-RGFp98rSst6vR-NbvDTBx_a6Ngus1k-Yfg-SoynMHNlYKa8yAVK占坑中。。。。。。。原创 2013-08-24 17:06:00 · 627 阅读 · 0 评论 -
算法集锦(特殊模板集)
1.Miller-Rabin 算法(基于费马小定理/Fermat 定理)作用:通过概率的方式判断素数。有误判概率,通过多次判断可以使误判概率控制在很小范围。理论基础:如果n是一个奇素数, 将n-1表示成2^s*r的形式(r是奇 数),a 是和n互素的任何整数, 那么a^r≡1(mod n) 或者对某个j(0≤j ≤s -1, j∈Z) 等式 a^(2^j*r) ≡-1(mod n)成立原创 2013-09-29 17:19:15 · 2011 阅读 · 0 评论