#include <cstdio>
#include <cstring>
#include <cmath>
#include <iostream>
#include <algorithm>
using namespace std;
#define LL long long
#define maxn 2
const int mod=10000;
struct matrix{
int f[4][4];
};
matrix mul(matrix a,matrix b)
{
matrix c;
memset(c.f,0,sizeof(c.f));
int i,j,k;
for(k=0;k<maxn;k++)
{
for(i=0;i<maxn;i++)
{
if(!a.f[i][k])continue;
for(j=0;j<maxn;j++)
{
//cout<<mod<<endl;
if(!b.f[k][j])continue;
c.f[i][j]=(c.f[i][j]+a.f[i][k]*b.f[k][j])%mod;
}
}
}
return c;
}
matrix pow_mod(matrix a,int b)
{
matrix s;
int i,j;
for(i=0;i<maxn;i++)
for(j=0;j<maxn;j++)
s.f[i][j]=(i==j?1:0);
if(b<0)
{
s.f[0][0]=0;s.f[0][1]=1;
s.f[1][0]=1;s.f[1][1]=-1;
return s;
}
while(b)
{
if(b&1)
s=mul(s,a);
a=mul(a,a);
b=b>>1;
}
return s;
}
int main()
{
int F[40];
F[0]=0;F[1]=1;
for(int i=2;i<40;i++)
F[i]=F[i-1]+F[i-2];
int n;
while(cin>>n)
{
if(n<40)
{
cout<<F[n]<<endl;
continue;
}
double s,p;
int ans;
p=(sqrt(5.0)+1.0)/2.0;
s=-0.5*log10(5.0)+1.0*n*log10(p);
s=s-(int)s;
ans=(int)(pow(10.0,s)*1000);
cout<<ans<<"...";
matrix e;
e.f[0][0]=e.f[0][1]=e.f[1][0]=1;e.f[1][1]=0;
e=pow_mod(e,n);
printf("%04d\n",e.f[0][1]);//注意前导0
}
return 0;
}
/*
由数题目的据样例可知,当n<40时,数据长度小于8,用个数组保持,可直接输出。
f[n]=(1/√5) * [((1+√5)/2)^n-((1-√5)/2)^n](n=1,2,3.....)
p=(sqrt(5.0)+1.0)/2.0;
取对数log10(f[n])=-0.5*log10(5.0)+1.0*n*log10(p)+log10(1-((1-√5)/(1+√5))^n);
其中当n够大时,log10(1-((1-√5)/(1+√5))^n)趋于0,所以可以省略
令log10(f[n])=a+b,a为整数部分,b为小数部分
a是数据的长度,(int)(10^b*1000)就是前4位
后四位用矩阵来求:
|f[n+1] f[n]|=|f[n] f[n-1]|*|1 1|
|1 0|
*/
hdu 3117 Fibonacci Numbers 矩阵+斐波那契数列通项公式
最新推荐文章于 2020-02-07 11:05:28 发布