#include <cstdio>
#include <cstring>
#include <cmath>
#include <vector>
#include <algorithm>
#include <iostream>
using namespace std;
#define LL __int64
const LL mod=1234567891;
LL n;
struct matrix{
LL f[31][31];
};
matrix mul(matrix a,matrix b)
{
matrix c;
LL i,j,k;
memset(c.f,0,sizeof(c.f));
for(k=0;k<n;k++)
{
for(i=0;i<n;i++)
{
if(!a.f[i][k])continue;
for(j=0;j<n;j++)
{
if(!b.f[k][j])continue;
c.f[i][j]=(c.f[i][j]+a.f[i][k]*b.f[k][j])%mod;
}
}
}
return c;
}
matrix pow_mod(matrix a,LL b)
{
matrix s;
memset(s.f,0,sizeof(s.f));
for(LL i=0;i<n;i++)
s.f[i][i]=1;
while(b)
{
if(b&1)
s=mul(s,a);
a=mul(a,a);
b=b>>1;
}
return s;
}
int main()
{
LL T;
cin>>T;
while(T--)
{
LL i,j,m;
cin>>m>>n;
matrix e;
n++;
memset(e.f,0,sizeof(e.f));
for(i=0;i<n-1;i++)
{
e.f[i][i]=i+1;
e.f[i][i+1]=n-i-2;
}
e.f[n-1][n-1]=e.f[n-2][n-1]=1;
/*for(LL i=0;i<n;i++)
{
for(LL j=0;j<n;j++)
cout<<e.f[i][j]<<" ";
cout<<endl;
}*/
e=pow_mod(e,m);
cout<<(n-1)*e.f[0][n-1]%mod<<endl;
}
return 0;
}
/*
题意:求由k种珍珠组成的长度为1~n的项链的方案数和,注:每种方案必须用到k种珍珠
dp[i][j]表示长度为i且由j种珍珠组成的方案数;
dp[i][j]=dp[i-1][j]*j+dp[i-1][j-1]*(k-j+1)
ans[n]=ans[n-1]+dp[n][k];
矩阵:
|dp[1][1] dp[1][2] ...dp[1][k] ans[0]|*|1 k-1 0 0|^n=|dp[n+1][1] dp[n+1][2] ...dp[n+1][] ans[n]|
|0 2 k-2 0|
| ... |
|0 0 k 1|
|0 0 0 1|
*/