#include <stdio.h>
#include <string.h>
#include <iostream>
using namespace std;
#define LL long long
LL n,m,d,k,e[505],s[505];
LL mul(LL a[],LL b[])//循环矩阵的乘法
{
LL i,j,c[505];
for(i=0;i<n;i++)
{
c[i]=0;
for(j=0;j<n;j++)
c[i]=(a[j]*b[(i-j+n)%n]+c[i])%m;
}
memcpy(a,c,sizeof(c));
}
void matrix(LL b)//快速幂
{
LL i,j,a[505];
memset(s,0,sizeof(s));
memset(a,0,sizeof(a));
s[0]=1;
for(i=0;i<=d;i++)
{
a[i]=a[(n-i)%n]=1;
}
while(b)
{
if(b&1)
mul(s,a);
mul(a,a);
b=b>>1;
}
}
int main()
{
while(cin>>n>>m>>d>>k)
{
LL i,j,ans[505];
for(i=0;i<n;i++)
cin>>e[i];
matrix(k);
for(i=0;i<n;i++)
{
ans[i]=0;
for(j=0;j<n;j++)
ans[i]=(ans[i]+e[j]*s[(i-j+n)%n])%m;
}
cout<<ans[0];
for(i=1;i<n;i++)
cout<<" "<<ans[i];
cout<<endl;
}
return 0;
}
/*
矩阵乘法:d=1,n=5
|1 1 0 0 1|
|1 1 1 0 0|
|0 1 1 1 0| *v0=v1
|0 0 1 1 1|
|1 0 0 1 1|
普通的矩阵乘法时间复杂度为:O(n^3logk),会超时
该矩阵式循环矩阵,每一层都等于上一层右移一位。循环矩阵相乘等于循环矩阵,所以时间复杂度缩小为O(n^2logk)
*/