关闭

POJ_2449_Remmarguts' Date

标签: poj2449AStar
584人阅读 评论(0) 收藏 举报
分类:

一直对AStar(简称A*)有些抗拒,感觉是挺难的东西,特别是那个f=g+h的公式里面的参数到底要怎么算总搞不清楚。但是今天把这题给做了,感觉对A*的理解又上一层了。

对于本题,h就是i点到目的地的最短距离,g就是开始地方到i点的实际距离,我们要求f=g+h最小,并且当目的地第K次出队时,那么这时候g的值就是我们所要求解的答案,对于入队大于K次的点,我们不继续求解,因为此后求的就是K+1之后的最短距离了。

怎么求各点到目的点的最短距离呢?只要把所有边反向,然后以目的地为源点求一下最短路,得到的结果就是各点到目的地的最短路。


参考代码:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <queue>
using namespace std;

const int MAXN = 2000;
const int MAXM = 100100;
const int INF = 0x7f7f7f7f;

typedef struct Edge {
    int to,dis,next;
}Edge;

typedef struct dNode {
    int now;
    int dis;
    dNode(){};
    dNode(int n,int d):now(n),dis(d){};
}dNode;

typedef struct aNode {
    int v,g;
    aNode(){};
    aNode(int v,int g):v(v),g(g){};
}aNode;

void init();
void add_edge(int form,int to,int dis,Edge * edge,Edge * head,int &total);
void dijkstra(int src,Edge * edge,Edge * head);
int astar(int src,int des,int K,Edge * edge,Edge * head);
bool operator < (const dNode &a,const dNode &b);
bool operator < (const aNode &a,const aNode &b);
int vis[MAXN];
int dis[MAXN];
Edge head_1[MAXN];  //记录正向边的邻接表 
Edge head_2[MAXN];  //记录反向边的邻接表 
Edge edge_1[MAXM];  //记录正向边数据 
Edge edge_2[MAXM];  //记录反向边数据 
int N,M,total_1,total_2;

int main(int argc,char * argv[]) {
    int i,j,k;
    int from,to,dis;
    int S,T,K;
    int res;
    while (scanf("%d%d",&N,&M)!=EOF) {
        init();
        for (i=0;i<M;++i) {
            scanf("%d%d%d",&from,&to,&dis);
            add_edge(from,to,dis,edge_1,head_1,total_1);
            add_edge(to,from,dis,edge_2,head_2,total_2);
        }
        scanf("%d%d%d",&S,&T,&K);
        if (S == T) ++K;
        dijkstra(T,edge_2,head_2);
        res = astar(S,T,K,edge_1,head_1);
        printf("%d\n",res);
    }
    return 0;
}

void init() {
    int i;
    for (i=0;i<=N;++i) {
        head_1[i].next = 0;
        head_2[i].next = 0;
    }
    total_1 = 0;
    total_2 = 0;
}

void add_edge(int from,int to,int dis,Edge * edge,Edge * head,int &total) {
    ++total;
    edge[total].to = to;
    edge[total].dis = dis;
    edge[total].next = head[from].next;
    head[from].next = total;
}

void dijkstra(int src,Edge * edge,Edge * head) {
    int p;
    dNode node;
    priority_queue<dNode> pq;
    memset(dis,0x7f,sizeof(dis));
    dis[src] = 0;
    while (!pq.empty()) pq.pop();
    pq.push(dNode(src,0));
    memset(vis,0,sizeof(vis));
    while (!pq.empty()) {
        node = pq.top();
        pq.pop();
        if (vis[node.now]) continue;
        vis[node.now] = 1;
        p = head[node.now].next;
        while (p) {
            if (dis[node.now] < dis[edge[p].to] - edge[p].dis) {
                dis[edge[p].to] = dis[node.now] + edge[p].dis;
                pq.push(dNode(edge[p].to,dis[edge[p].to]));
            }
            p = edge[p].next;
        }
    }
}

int astar(int src,int des,int K,Edge * edge,Edge * head) {
    int p;
    aNode now;
    priority_queue<aNode> pq;
    while (!pq.empty()) pq.pop();
    memset(vis,0,sizeof(vis));
    pq.push(aNode(src,0));
    while (!pq.empty()) {
        now = pq.top();
        pq.pop();
        ++vis[now.v];
        if (vis[now.v] > K) continue;
        if (K == vis[des]) return now.g;
        p = head[now.v].next;
        while (p) {
            pq.push(aNode(edge[p].to, now.g + edge[p].dis));
            p = edge[p].next;
        }
    }
    return -1;
}

bool operator < (const dNode &a,const dNode &b) {
    return a.dis > b.dis;
}

bool operator < (const aNode &a,const aNode &b) {
    return a.g + dis[a.v] > b.g + dis[b.v]; 
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:182150次
    • 积分:1986
    • 等级:
    • 排名:第19692名
    • 原创:45篇
    • 转载:30篇
    • 译文:0篇
    • 评论:17条
    最新评论