# HDU 1258

Sum It Up

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 4874    Accepted Submission(s): 2553

Problem Description
Given a specified total t and a list of n integers, find all distinct sums using numbers from the list that add up to t. For example, if t=4, n=6, and the list is [4,3,2,2,1,1], then there are four different sums that equal 4: 4,3+1,2+2, and 2+1+1.(A number can be used within a sum as many times as it appears in the list, and a single number counts as a sum.) Your job is to solve this problem in general.

Input
The input will contain one or more test cases, one per line. Each test case contains t, the total, followed by n, the number of integers in the list, followed by n integers x1,...,xn. If n=0 it signals the end of the input; otherwise, t will be a positive integer less than 1000, n will be an integer between 1 and 12(inclusive), and x1,...,xn will be positive integers less than 100. All numbers will be separated by exactly one space. The numbers in each list appear in nonincreasing order, and there may be repetitions.

Output
For each test case, first output a line containing 'Sums of', the total, and a colon. Then output each sum, one per line; if there are no sums, output the line 'NONE'. The numbers within each sum must appear in nonincreasing order. A number may be repeated in the sum as many times as it was repeated in the original list. The sums themselves must be sorted in decreasing order based on the numbers appearing in the sum. In other words, the sums must be sorted by their first number; sums with the same first number must be sorted by their second number; sums with the same first two numbers must be sorted by their third number; and so on. Within each test case, all sums must be distince; the same sum connot appear twice.

Sample Input
4 6 4 3 2 2 1 1
5 3 2 1 1
400 12 50 50 50 50 50 50 25 25 25 25 25 25
0 0

Sample Output
Sums of 4:
4
3+1
2+2
2+1+1
Sums of 5:
NONE
Sums of 400:
50+50+50+50+50+50+25+25+25+25

50+50+50+50+50+25+25+25+25+25+25

//同样的dfs搜索不过需要注意答案的集合中前一个元素必须大于等于后面一个元素

//因为从大到小开始输出，可以先给输入排序再搜索

#include <stdio.h>
#include <algorithm>
using namespace std;
int n,m,flag,cnt=0;
int a[13];
int vis[13];
int c[13],k;
bool cmp(const int &a,const int &b)
{
return a>b;
}

void dfs(int ini,int init)  //和、初始位置
{
if(ini==n)
{
flag=1;
printf("%d",c[0]);
for(int i=1;i<cnt;i++)
printf("+%d",c[i]);
printf("\n");
}
else
{
for(int i=init;i<m;i++)
{
if(!vis[i])
{
ini+=a[i];
vis[i]=1;
c[cnt++]=a[i];
dfs(ini,i+1);
vis[i]=0;  //回溯
ini-=a[i];
cnt--;
while(a[i]==a[i+1])  //避免重复
i++;
}
}
}
}

int main()
{
while(~scanf("%d%d",&n,&m)&&(n+m))
{
for(int i=0;i<m;i++)
{
scanf("%d",&a[i]);
vis[i]=0;
}
sort(a,a+m,cmp);
cnt=flag=0;
printf("Sums of %d:\n",n);
dfs(0,0);
if(!flag)
printf("NONE\n");
}
return 0;
}


• 本文已收录于以下专栏：

## hdu 1258 Sum It Up （dfs+路径记录）

Sum It Up Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Tota...
• u011721440
• 2014年08月04日 18:42
• 1057

## POJ 1258 Agri-Net（最小生成树 Kruskal）

• acvay
• 2014年10月22日 10:37
• 799

## poj1258 - Agri-Net

• wangjian8006
• 2012年08月17日 09:45
• 4070

## POJ1258最小生成树简单题

• u013761036
• 2015年02月06日 16:39
• 1083

## Light OJ 1258 Making Huge Palindromes 末尾添加最少字符变回文串

• u011686226
• 2014年05月27日 17:53
• 913

## poj1258Agri-Net（最小生成树）

• zcmartin2014214283
• 2016年06月16日 14:33
• 204

## malacher算法lightoj1258

malacher算法用来求解回文串问题，和kmp算法的思想有相似的部分，利用已经匹配过的字符的信息，而不是盲目匹配，这篇博客总结的很好 大神算法讲解戳这里题意：给定一个字符串，求解至少需要在字符串右...
• liuzhan214
• 2016年10月04日 15:18
• 130

## hdu 1258

• zjsyhjh
• 2014年05月26日 17:50
• 230

## poj 1258 最小生成树 prim+优先队列

• Jackyguo1992
• 2012年10月10日 09:23
• 1128

## LightOJ 1258 Making Huge Palindromes (回文&KMP)

http://lightoj.com/volume_showproblem.php?problem=1258 首先原串+翻转过来的串必然是一个回文串，但是二者在中间可以“融合”，而KMP算法...
• synapse7
• 2014年03月27日 13:40
• 1456

举报原因： 您举报文章：HDU 1258 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)