关闭

2015 南阳 CCPC hdu 5542 The Battle of Chibi(DP+树状数组优化+离散化)

标签: c语言hdudp
578人阅读 评论(0) 收藏 举报
分类:

题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=5542

题目大意:

给一段长为n的序列,现在要找出m个严格递增的数,问这样的找法有多少种。

范围 :n<=1000,m<=1000,a[i]<=10^9

思路:

首先会往dp方面想,我们令f[i][j]表示前i个数字里面取了j个严格递增的数的找法。

但是为了严格递增,我们可以规定这个f[i][j]的最后那个数就是a[i]。

此时我们就可以得到转移方程:f[i][j]=∑f[k][j-1],其中1<=k<i,并且有a[k]<a[i]。

如此一来,我们就得到了一个O(n^3)的写法。

但是这样的话过不了这个题目。因为是求和,所以我们会想到利用树状数组在logn的时间里面完成。

这样一来总的复杂度就是O(n^2*logn)。

这里由于a[i]比较大,数的总量又比较小,所以我们可以先对数据进行离散化,将范围缩小到1000.

代码:

#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<map>
#define mod 1000000007
#define ll long long
using namespace std;
int n,m;
ll f[1005][1005];
int lowbit(int x){
	return x&(-x);
}
void add(int x,int y,ll tmp)
{
	 while(x<=n){
      f[x][y]+=tmp;
      f[x][y]=f[x][y]%mod;
	  x+=lowbit(x); 		
 	}
}
ll getsum(int x,int y)
{
	ll ans=0;
	while(x){
		ans+=f[x][y];
		ans=ans%mod;
		x=x-lowbit(x);
	}
	return ans;
}
int main()
{
  int i,j,k,a[1005],c[1005],T,aa[1005],icase=0,index;
  scanf("%d",&T);
  map<int,int>mp;
  while(T--)
  {
  	index=1;
  	icase++;
  	memset(f,0,sizeof(f));
  	memset(c,0,sizeof(c));
  	scanf("%d%d",&n,&m);
  	for(i=1;i<=n;i++)
  	{
	  scanf("%d",&a[i]);
      aa[i]=a[i];
  }
  sort(a+1,a+1+n);
  k=1;
  for(i=1;i<=n;i++)
  {
  	aa[i]=lower_bound(a+1,a+1+n,aa[i])-a;
  }

	ll maxi=0,ans;
	for(i=1;i<=n;i++)
	{
	for(j=1;j<=m;j++)
	{
		if(j>i)continue;
		if(j==1)add(aa[i],1,1);
		else 
		 {
		 ans=getsum(aa[i]-1,j-1);
  	     add(aa[i],j,ans);
		   }
	}

	}
	maxi=getsum(n,m);
    printf("Case #%d: ",icase);
	printf("%lld\n",maxi%mod);
  }  
  return 0;	
}


0
0
查看评论

hdu 5542 The Battle of Chibi(DP+树状数组+离散化)

The Battle of ChibiProblem Description Cao Cao made up a big army and was going to invade the whole South China. Yu Zhou was worried about it. He tho...
  • blessLZH0108
  • blessLZH0108
  • 2017-04-26 16:36
  • 220

HDU 5542 The Battle of Chibi 树状数组+dp+优化

The Battle of Chibi Time Limit: 6000/4000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others) Total Submission(s): 177...
  • LZK1997
  • LZK1997
  • 2017-08-12 09:31
  • 89

The Battle of Chibi HDU - 5542 (dp+离散化+树状数组优化)

Problem Description Cao Cao made up a big army and was going to invade the whole South China. Yu Zhou was worried about it. He thought the only way t...
  • elbadaernu
  • elbadaernu
  • 2017-10-05 17:47
  • 55

南阳ccpc C题 The Battle of Chibi(树状数组优化+dp)

The Battle of Chibi Time Limit: 6000/4000MS (Java/Others)     Memory Limit: 65535/65535KB (Java/Others) Submit  Sta...
  • dml_96
  • dml_96
  • 2015-10-29 22:14
  • 1152

HDU 5542 The Battle of Chibi(dp+树状数组)

按照惯例,比赛期间应该停止刷题……         但是经过上次的失败经历我发现,手感这种东西还是很重要的,不然关键时候卡题……         于是今晚重新刷...
  • u013534123
  • u013534123
  • 2017-10-26 23:15
  • 54

HDU 5542 The Battle of Chibi(DP+树状数组)

思路:求递增子序列个数为M的方案数,显然有一个很简单的DP是dp[i][j]=sum(dp[i-1][k]) (a[k] #include using namespace std; const int maxn = 1005; const int mod = 1e9+7; #define ...
  • qq_21057881
  • qq_21057881
  • 2016-07-25 19:43
  • 460

【HUD】5542 The Battle of Chibi 【dp+树状数组】

http://acm.split.hdu.edu.cn/showproblem.php?pid=5542长度为n的序列,求该序列中有多少个长度为m的单调递增子序列。dp[i][j] 以a[i]结尾,长度为j的,严格上升子序列的数量dp[i][j]=sum{dp[k][j-1]},k<=i且a...
  • zqf3535
  • zqf3535
  • 2017-10-14 20:34
  • 85

[CCPC2015][HDU5548]Mahjong解题报告

题目 http://acm.hdu.edu.cn/showproblem.php?pid=5548 给定点数为1~K的麻将牌各4张(这4张完全相同),问有多少种方案,从中选出一个M张牌组成的集合,能够和牌。“和牌”指:其中有两张完全相同的将牌,其他牌可以被三三分组,每组要么是“n-1 n n+...
  • wmdcstdio
  • wmdcstdio
  • 2016-11-20 00:32
  • 780

hdu 5542 The Battle of Chibi

题意: 求n个数中长度为m的上升子序列的个数 dpij表示到达i位置,长度为j的方案数目!dp[i][j] = sum( dp[k][j-1], iff a[k] < a[i], 0<=k<i)。树状数组优化dp,对每一个长度都用树状数组记录对应位置的方案数! 这道题主要是让...
  • yp_2013
  • yp_2013
  • 2016-03-02 21:24
  • 612

HDU 5542 ccpc 树状数组优化dp +离散化

给出长度为n的序列,问这个序列中有多少个长度为m的单调递增子序列。 dp[i][j],表示到第i个数字,长度为j的单调递增子序列的个数。需要注意的是取第j个数字 思路:通过枚举第i个数字来找出第i个数字前面存在的小于他的dp[k][i-1] 的数量  (i,j的位置不要颠倒了) ...
  • became_a_wolf
  • became_a_wolf
  • 2016-05-19 22:41
  • 106
    个人资料
    • 访问:113496次
    • 积分:3387
    • 等级:
    • 排名:第11792名
    • 原创:235篇
    • 转载:2篇
    • 译文:0篇
    • 评论:9条
    最新评论