关闭

2015 南阳 CCPC hdu 5542 The Battle of Chibi(DP+树状数组优化+离散化)

标签: c语言hdudp
425人阅读 评论(0) 收藏 举报
分类:

题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=5542

题目大意:

给一段长为n的序列,现在要找出m个严格递增的数,问这样的找法有多少种。

范围 :n<=1000,m<=1000,a[i]<=10^9

思路:

首先会往dp方面想,我们令f[i][j]表示前i个数字里面取了j个严格递增的数的找法。

但是为了严格递增,我们可以规定这个f[i][j]的最后那个数就是a[i]。

此时我们就可以得到转移方程:f[i][j]=∑f[k][j-1],其中1<=k<i,并且有a[k]<a[i]。

如此一来,我们就得到了一个O(n^3)的写法。

但是这样的话过不了这个题目。因为是求和,所以我们会想到利用树状数组在logn的时间里面完成。

这样一来总的复杂度就是O(n^2*logn)。

这里由于a[i]比较大,数的总量又比较小,所以我们可以先对数据进行离散化,将范围缩小到1000.

代码:

#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<map>
#define mod 1000000007
#define ll long long
using namespace std;
int n,m;
ll f[1005][1005];
int lowbit(int x){
	return x&(-x);
}
void add(int x,int y,ll tmp)
{
	 while(x<=n){
      f[x][y]+=tmp;
      f[x][y]=f[x][y]%mod;
	  x+=lowbit(x); 		
 	}
}
ll getsum(int x,int y)
{
	ll ans=0;
	while(x){
		ans+=f[x][y];
		ans=ans%mod;
		x=x-lowbit(x);
	}
	return ans;
}
int main()
{
  int i,j,k,a[1005],c[1005],T,aa[1005],icase=0,index;
  scanf("%d",&T);
  map<int,int>mp;
  while(T--)
  {
  	index=1;
  	icase++;
  	memset(f,0,sizeof(f));
  	memset(c,0,sizeof(c));
  	scanf("%d%d",&n,&m);
  	for(i=1;i<=n;i++)
  	{
	  scanf("%d",&a[i]);
      aa[i]=a[i];
  }
  sort(a+1,a+1+n);
  k=1;
  for(i=1;i<=n;i++)
  {
  	aa[i]=lower_bound(a+1,a+1+n,aa[i])-a;
  }

	ll maxi=0,ans;
	for(i=1;i<=n;i++)
	{
	for(j=1;j<=m;j++)
	{
		if(j>i)continue;
		if(j==1)add(aa[i],1,1);
		else 
		 {
		 ans=getsum(aa[i]-1,j-1);
  	     add(aa[i],j,ans);
		   }
	}

	}
	maxi=getsum(n,m);
    printf("Case #%d: ",icase);
	printf("%lld\n",maxi%mod);
  }  
  return 0;	
}


0
0

猜你在找
【直播】机器学习&数据挖掘7周实训--韦玮
【套餐】系统集成项目管理工程师顺利通关--徐朋
【直播】3小时掌握Docker最佳实战-徐西宁
【套餐】机器学习系列套餐(算法+实战)--唐宇迪
【直播】计算机视觉原理及实战--屈教授
【套餐】微信订阅号+服务号Java版 v2.0--翟东平
【直播】机器学习之矩阵--黄博士
【套餐】微信订阅号+服务号Java版 v2.0--翟东平
【直播】机器学习之凸优化--马博士
【套餐】Javascript 设计模式实战--曾亮
查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:80976次
    • 积分:3058
    • 等级:
    • 排名:第11315名
    • 原创:235篇
    • 转载:2篇
    • 译文:0篇
    • 评论:7条
    最新评论