关闭

How to work around Android’s 24 MB memory limit

1155人阅读 评论(2) 收藏 举报
分类:

The Android framework enforces a per-process 24 MB memory limit. On some older devices, such as the G1, the limit is even lower at 16 MB.

What’s more, the memory used by Bitmaps is included in the limit. For an application manipulating images it is pretty easy to reach this limit and get the process killed with an OOM exception:

E/dalvikvm-heap(12517): 1048576-byte external allocation too large for this process.

E/GraphicsJNI(12517): VM won't let us allocate 1048576 bytes

D/AndroidRuntime(12517): Shutting down VM

W/dalvikvm(12517): threadid=1: thread exiting with uncaught exception (group=0x4001d7f0)

E/AndroidRuntime(12517): FATAL EXCEPTION: main

E/AndroidRuntime(12517): java.lang.OutOfMemoryError: bitmap size exceeds VM budget

This limit is ridiculously low. For a device, like the Nexus One, with 512MB of physical RAM, setting the per-process memory limit for the foreground activity to only 5% of the RAM is a silly mistake. But anyway, that’s how things are and we have to live with it — i.e. find how to work around it.

There are two ways to allocate much more memory than the limit:

One way is to allocate memory from native code. Using the NDK (native development kit) and JNI, it’s possible to allocate memory from the C level (e.g. malloc/free or new/delete), and such allocations are not counted towards the 24 MB limit. It’s true, allocating memory from native code is not as convenient as from Java, but it can be used to store some large amounts of data in RAM (even image data).

Another way, which works well for images, is to use OpenGL textures — the texture memory is not counted towards the limit.

To see how much memory your app has really allocated you can use android.os.Debug.getNativeHeapAllocatedSize().

Using either of the two techniques presented above, on a Nexus One, I could easily allocate 300MB for a single foreground process — more than 10 times the default 24 MB limit.

0
0

猜你在找
深度学习基础与TensorFlow实践
【在线峰会】前端开发重点难点技术剖析与创新实践
【在线峰会】一天掌握物联网全栈开发之道
【在线峰会】如何高质高效的进行Android技术开发
机器学习40天精英计划
Python数据挖掘与分析速成班
微信小程序开发实战
JFinal极速开发企业实战
备战2017软考 系统集成项目管理工程师 学习套餐
Python大型网络爬虫项目开发实战(全套)
查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:723133次
    • 积分:9009
    • 等级:
    • 排名:第1931名
    • 原创:111篇
    • 转载:376篇
    • 译文:0篇
    • 评论:111条
    文章分类
    最新评论