转载请注明出处,谢谢 http://blog.csdn.net/ACM_cxlove?viewmode=contents by---cxlove
题目:有一串数字,要将它排列成升序,每次可以交换两个数,交换一次的代价为两数之和。要求代价最小。
http://poj.org/problem?id=3270
经典的置换题目,黑书中有详细介绍。
将原有数列排序之后,得到目标串,这样就与原串形成了置换。
这样的置换中分为多个循环,最优解当然是在循环内部进行交换,而循环间的交换只会增加代价。而在一个循环内部的最优解又是用循环中最小的数,依次与其它数进行交换,如果循环节长度为m,那么最小的数需要交换m-1次,而其它数各一次。
但是这样并不一定最优,因为有一种特殊情况,就是用循环外的一个数,与循环内的所有数交换,利用这个非常小的数进行中介。
那么最终就是有两种情况。一种是用循环内部最小的数为中介,另外一种就是用整个的最小的数为中介交换。
找到每个循环节的长度以及最小元素。
#include<iostream>
#include<cstring>
#include<queue>
#include<cstdio>
#include<cmath>
#include<algorithm>
#define N 100005
#define inf 1<<29
#define MOD 2007
#define LL long long
using namespace std;
struct Node{
int val;//循环中的最小值
int cnt;//循环节长度
}a[N];
int n,m[N],tot,t[N];
bool flag[N];
void dfs(int u){
for(int i=0;i<n;i++){
if(t[i]==u&&!flag[i]){
flag[i]=true;
a[tot].cnt++;
a[tot].val=min(a[tot].val,t[i]);
dfs(m[i]);
}
}
}
int main(){
while(scanf("%d",&n)!=EOF){
int sum=0,mmin=1<<30;
for(int i=0;i<n;i++){
scanf("%d",&m[i]);
sum+=m[i];
t[i]=m[i];
mmin=min(mmin,m[i]);
}
sort(m,m+n);
tot=0;
for(int i=0;i<n;i++){
if(flag[i]) continue;
a[tot].val=t[i];
a[tot].cnt=1;
flag[i]=true;
dfs(m[i]);
tot++;
}
for(int i=0;i<tot;i++)
sum+=min(a[i].val*(a[i].cnt-2),mmin*(a[i].cnt+1)+a[i].val);
printf("%d\n",sum);
}
return 0;
}