转载请注明出处,谢谢http://blog.csdn.net/acm_cxlove/article/details/7854526 by---cxlove
题目:给出一个光源,给出一些圆,求投影区间。
http://poj.org/problem?id=1375
求切线与X轴的交点坐标,排序后合并。
求一点与圆的切线,算是解析几何???

 
图好丑,好欢乐啊。。。首先可以求出角a,通过半径与PQ距离,而角b也可以求出。
那么就可以求出两条切线与Y轴的夹角,分别为a+b,b-a。不需要管正负,之后我们要求距离,负角就成了+不影响结果。
详见代码,简洁1A
#include<iostream>
#include<fstream>
#include<iomanip>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<cmath>
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<string>
#include<vector>
#include<sstream>
#include<ctime>
#include<cassert>
#define LL long long
#define eps 1e-8
#define inf 999999.0
#define zero(a) abs(a)<eps
#define N 20
#define MOD 100000007
#define pi acos(-1.0)
using namespace std;
struct Point{
    double x,y;
    Point(){}
    Point(double tx,double ty){x=tx;y=ty;}
}p,q;
struct Node{
    double l,r;
}line[505];
double dist(Point p1,Point p2){
    return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y));
}
bool cmp(Node n1,Node n2){
    return n1.l<n2.l;
}
int main(){
    int n;
    double r;
    while(scanf("%d",&n)!=EOF&&n){
        scanf("%lf%lf",&p.x,&p.y);
        for(int i=0;i<n;i++){
            scanf("%lf%lf%lf",&q.x,&q.y,&r);
            double d=dist(p,q);
            double a=asin(r/d),b=asin((p.x-q.x)/d);
            double ang1=a+b,ang2=b-a;
            line[i].l=p.x-p.y*tan(ang1);
            line[i].r=p.x-p.y*tan(ang2);
        }
        sort(line,line+n,cmp);
        double L=line[0].l,R=line[0].r;
        for(int i=1;i<n;i++){
            if(line[i].l>R){
                printf("%.2f %.2f\n",L,R);
                L=line[i].l;R=line[i].r;
            }
            else
                R=max(line[i].r,R);
        }
        printf("%.2f %.2f\n\n",L,R);
    }
    return 0;
}
 
 
 
                   
                   
                   
                   
                             本文介绍了一种计算光源在多个圆上产生的投影区间的算法。通过求解切线与X轴的交点并进行排序合并,实现了简洁高效的求解过程。文章包含完整的C++代码实现。
本文介绍了一种计算光源在多个圆上产生的投影区间的算法。通过求解切线与X轴的交点并进行排序合并,实现了简洁高效的求解过程。文章包含完整的C++代码实现。
           
       
           
                 
                 
                 
                 
                 
                
               
                 
                 
                 
                 
                
               
                 
                 扫一扫
扫一扫
                     
              
             
                   788
					788
					
 被折叠的  条评论
		 为什么被折叠?
被折叠的  条评论
		 为什么被折叠?
		 
		  到【灌水乐园】发言
到【灌水乐园】发言                                
		 
		 
    
   
    
   
             
            


 
            