# POJ 2447 RSA —— RSA加密算法的破解过程

589人阅读 评论(0)

RSA
 Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 3358 Accepted: 709

Description

RSA is the best-known public key encryption algorithm. In this algorithm each participant has a private key that is shared with no one else and a public key which is published so everyone knows it. To send a secure message to this participant, you encrypt the message using the widely known public key; the participant then decrypts the messages using his or her private key. Here is the procedure of RSA:

First, choose two different large prime numbers P and Q, and multiply them to get N (= P * Q).
Second, select a positive integer E (0 < E < N) as the encryption key such that E and T= (P - 1) * (Q - 1) are relatively prime.
Third, compute the decryption key D such that 0 <= D < T and (E * D) mod T = 1. Here D is a multiplicative inverse of E, modulo T.

Now the public key is constructed by the pair {E, N}, and the private key is {D, N}. P and Q can be discarded.

Encryption is defined by C = (M ^ E) mod N, and decryption is defined by M = (C ^ D) mod N, here M, which is a non-negative integer and smaller than N, is the plaintext message and C is the resulting ciphertext.

To illustrate this idea, let’s see the following example:
We choose P = 37, Q = 23, So N = P * Q = 851, and T = 792. If we choose E = 5, D will be 317 ((5 * 317) mod 792 = 1). So the public key is {5, 851}, and the private key is {317, 851}. For a given plaintext M = 7, we can get the ciphertext C = (7 ^ 5) mod 851 = 638.

As we have known,for properly choosen very large P and Q, it will take thousands of years to break a key, but for small ones, it is another matter.

Now you are given the ciphertext C and public key {E, N}, can you find the plaintext M?

Input

The input will contain several test cases. Each test case contains three positive integers C, E, N (0 < C < N, 0 < E < N, 0 < N < 2 ^ 62).

Output

Output the plaintext M in a single line.

Sample Input

638 5 851

Sample Output

7

Source

POJ Monthly,static

#include <cstdio>
#include <cmath>
#include <algorithm>
#include <iostream>
#include <cstring>
#include <map>
#include <string>
#include <stack>
#include <cctype>
#include <vector>
#include <queue>
#include <set>
#include <utility>
#include <cassert>
using namespace std;
///#define Online_Judge
#define outstars cout << "***********************" << endl;
#define clr(a,b) memset(a,b,sizeof(a))
#define lson l , mid  , rt << 1
#define rson mid + 1 , r , rt << 1 | 1
#define mk make_pair
#define FOR(i , x , n) for(int i = (x) ; i < (n) ; i++)
#define FORR(i , x , n) for(int i = (x) ; i <= (n) ; i++)
#define REP(i , x , n) for(int i = (x) ; i > (n) ; i--)
#define REPP(i ,x , n) for(int i = (x) ; i >= (n) ; i--)
const int MAXN = 40000 + 50;
const int MAXS = 10000 + 50;
const int sigma_size = 26;
const long long LLMAX = 0x7fffffffffffffffLL;
const long long LLMIN = 0x8000000000000000LL;
const int INF = 0x7fffffff;
const int IMIN = 0x80000000;
const int inf = 1 << 30;
#define eps 1e-10
const long long MOD = 1000000000 + 7;
const int mod = 10007;
typedef long long LL;
const double PI = acos(-1.0);
typedef double D;
typedef pair<int , int> pii;
typedef vector<int> vec;
typedef vector<vec> mat;

#define Bug(s) cout << "s = " << s << endl;
#define gcc 10007
inline __int64 gcd(__int64 a , __int64 b)
{
if(b > a)return gcd(b , a);
return b == 0 ? a : gcd(b , a % b);
}
inline __int64 Produce_Mod(__int64 a , __int64 b , __int64 Mod)
{
__int64 sum = 0;
while(b > 0)
{
if(b & 1)sum = (sum + a) % Mod;
a = (a + a) % Mod;
b >>= 1;
}
return sum;
}
inline __int64 Power(__int64 a , __int64 b , __int64 Mod)
{
__int64 sum = 1;
while(b > 0)
{
if(b & 1)sum = Produce_Mod(sum , a , Mod);
a = Produce_Mod(a , a , Mod);
b >>= 1;
}
return sum;
}
__int64 Pollard_rho(__int64 n)
{
int i = 1;
__int64 x = rand() % (n - 1) + 1;
__int64 y = x;
__int64 k = 2;
__int64 d;
do
{
i++;
d = gcd(n + y - x , n);
if(d > 1 && d < n)
{
return d;
}
if(i == k)y = x , k *= 2;
x = ((Produce_Mod(x , x , n) - gcc) % n + n) % n;
}while(y != x);
return n;
}
__int64 extgcd(__int64 a , __int64 b , LL &x , LL &y)
{
if(b == 0){x = 1;y = 0; return a;}
__int64 d = extgcd(b , a % b , x , y);
LL t = x ; x = y ; y = t - a / b * y;
return d;
}
int main()
{
//ios::sync_with_stdio(false);
#ifdef Online_Judge
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif // Online_Judge
__int64 c , e , n , p , q ,m , t , d;
while(~scanf("%lld%lld%lld" , &c , &e , &n))
{
p = Pollard_rho(n);q = n / p;
t = (p - 1) * (q - 1);
LL x;
extgcd(e , t , d , x);
d = (d % t + t) % t;
printf("%lld\n" , Power(c , d , n));
}
return 0;
}


0
0

* 以上用户言论只代表其个人观点，不代表CSDN网站的观点或立场
个人资料
• 访问：160016次
• 积分：4189
• 等级：
• 排名：第7360名
• 原创：266篇
• 转载：12篇
• 译文：0篇
• 评论：14条
评论排行
最新评论