九野的博客,转载请注明出处:http://blog.csdn.net/acmmmm/article/details/13799337
题意:
T个测试数据
n串字符 能否倒过来用(1表示能倒着用)
问能否把所有字符串 首尾相接
欧拉回路是图G中的一个回路,经过每条边有且仅一次,称该回路为欧拉回路。具有欧拉回路的图称为欧拉图,简称E图。
无向图欧拉回路:所有点度 为偶数 && 连通
欧拉通路允许有且仅有2个奇度数的点(欧拉回路属于欧拉通路)
有向图存在欧拉回路的充要条件
一个有向图存在欧拉回路,所有顶点的入度等于出度且该图是连通图,或者 一个顶点的度数为1,另一个度数为-1,其他顶点的度数为0。
混合图存在欧拉回路条件:
混合图就是有向边和无向边同时存在。
把所有无向边任意定向得到有向图,若有向图存在欧拉回路则原图存在欧拉回路
这样会出现一个问题:对于某一点: 入度 != 出度
也就是说,对于实际上的欧拉回路,每个无向边都有一个确定的方向,如何确定这些无向边的方向,就用网络流来判断
有向边方向是确定的,所以不需要加入网络流来判断方向
此题中单词若不能倒着用可以视为有向边,能倒着用就是无向边
http://yzmduncan.iteye.com/blog/1149049
.
欧拉回路要求出度=入度 ,因此若出度与入度 差为奇数,一定没有欧拉回路 ch[i]%1 必须==0
用并查集判连通性
对于所有的点,总入度 + 总出度 = 0 【1】
ch[i]表示字母i+‘a' 的入度-出度的值
由【1】式推出 所有 ch[i] < 0的点 + ch[i]>0 的点 = 0
所以 让所有ch[i]<0 点与源点建边 ,权值为 -ch[i]
ch[i]>0 与汇点建边,权值为 ch[i]
若dinic满流,表示上述式子成立,则存在回路
下面代码没有将每个点拆成 a和a' 来区分入度和出度(不拆也能做,拆了更直观)
在上面把无向边任意定向(过程就是,以任意一端为入度,另一端为出度)
这样会导致:图中某些点 的度 != 0,即边入的太多了(或出的太多了)
网络流判欧拉回路证明:
把所有缺入度的点 连到源点(边权为该点缺的入度) 这个点连着它所有能连到的出度 边的点 =》若满流,则该点的入度 == 该点的出度,即该点符合条件
注意: 缺入度 和 缺出度的点 中间连着的边就是无向边 (被流过就说明这条边 需要被反向)
这样,无向边被定向后,(该边被流过就说明定向错误,该边需要反向)用网络流判断每条无向边的方向,就能得到一个欧拉回路的解
#include <stdio.h>
#include <string.h>
#include <queue>
#define inf 10000
#define ll short
#define end End
using namespace std;
struct Edge{
short from, to, cap, nex;
}edge[1007];
short head[28], edgenum;
void addedge(short u, short v, short cap){
Edge E ={u, v, cap, head[u]};
edge[edgenum] = E;
head[u] = edgenum++;
Edge E_ = {v,u,0,head[v]};
edge[edgenum] = E_;
head[v] = edgenum++;
}
short sign[28];
bool BFS(short from, short to){
memset(sign, -1, sizeof(sign));
sign[from] = 0;
queue<short>q;
q.push(from);
while( !q.empty() ){
int u = q.front(); q.pop();
for(short i = head[u]; i!=-1; i = edge[i].nex)
{
short v = edge[i].to;
if(sign[v]==-1 && edge[i].cap)
{
sign[v] = sign[u] + 1, q.push(v);
if(sign[to] != -1)return true;
}
}
}
return false;
}
short Stack[4], top, cur[4];
short dinic(short from, short to){
short ans = 0;
while( BFS(from, to) )
{
memcpy(cur, head, sizeof(head));
short u = from; top = 0;
while(1)
{
if(u == to)
{
short flow = inf, loc;//loc 表示 Stack 中 cap 最小的边
for(short i = 0; i < top; i++)
if(flow > edge[ Stack[i] ].cap)
{
flow = edge[Stack[i]].cap;
loc = i;
}
for(short i = 0; i < top; i++)
{
edge[ Stack[i] ].cap -= flow;
edge[Stack[i]^1].cap += flow;
}
ans += flow;
top = loc;
u = edge[Stack[top]].from;
}
for(short i = cur[u]; i!=-1; cur[u] = i = edge[i].nex)//cur[u] 表示u所在能增广的边的下标
if(edge[i].cap && (sign[u] + 1 == sign[ edge[i].to ]))break;
if(cur[u] != -1)
{
Stack[top++] = cur[u];
u = edge[ cur[u] ].to;
}
else
{
if( top == 0 )break;
sign[u] = -1;
u = edge[ Stack[--top] ].from;
}
}
}
return ans;
}
ll n;
char ss[22];
short ch[27], f[27];
bool use[27];
short start, end;
short find(short x){return x==f[x]?x:(f[x]=find(f[x]));}
void Union(short x, short y){
short fx = find(x), fy = find(y);
short temp = fx; if(fx>fy){fx=fy;fy=temp;}
f[fx] = fy;
}
int main(){
short T, i, j, Cas = 1; scanf("%d",&T);
while(T--)
{
memset(ch, 0, sizeof(ch));
memset(use,0, sizeof(use));
for(i=0;i<27;i++)f[i] = i;
memset(head, -1,sizeof(head)), edgenum = 0;
scanf("%d",&n);
for(i = 0; i < n; i++)
{
scanf("%s %d",ss,&j);
int a = ss[0]-'a', b = ss[strlen(ss)-1] - 'a';
ch[a]++, ch[b]--;
use[a] = use[b] = true;
Union(a,b);
if(j)addedge(a,b,1);
}
printf("Case %d: ",Cas++);
bool ok = true;
for(i=0;i<26;i++)
if(use[i])
{
j = i;
for(i++;i<26;i++)
if(use[i] && find(j)!=find(i))ok = false;
break;
}
short num = 0;
for(i=0;i<26;i++)if(use[i] && ch[i]%2)
{
num++;
if(ch[i]<0)start = i;
else end = i;
}
if(num == 1 || num>2)ok = false;
if(!ok){ printf("Poor boy!\n"); continue;}
if(num == 2)addedge(end, start, 1);
start = 26, end = 27;
short sum = 0;
for(i=0;i<26;i++)if(ch[i] && use[i] && i!=end && i!=start)
{
if(ch[i]<0)
addedge(start,i,-ch[i]/2), sum-=ch[i]/2;
else
addedge(i,end, ch[i]>>1);
}
if(sum != dinic(start, end))
printf("Poor boy!\n");
else
printf("Well done!\n");
}
}