给定一个有向图(若是无向图,那么可以用两条有向边表示一条无向边),边有一个权值表示这条边上的流量,
形象一点:我们有n个城市,告诉你某些路以及路上最多分分钟的车流量。
然后我们求从 1 点压入无限多的车,问从n点分分钟能跑出多少车量的问题称为 网络流(最大流)。
我们称无限多进入车辆的点为:源点
车辆的出口的点为:汇点
数据结构:用以下这样的结构体来表示边
struct Edge{
int from, to, cap, flow, nex; //一条边有起点,终点,最大车流量,当前车流量,下一个节点的指针
}edge[M];
对于每条边,当我们给这条边流过的车流量 = 最大车流量时,称这条边为:满流
对于每条边,cap - flow 就是残余流量(就是还能有多少量车可以从这条路上通过)
加边的函数:
int head[N], edgenum;//邻接表的形式,head为表头,每个点都有一个表头
void addedge(int from, int to, int cap){
Edge E = {from, to, cap, 0, head[from]};
edge[edgenum] = E;
head[from] = edgenum++;
Edge E2= {from, to, 0, cap, head[to]};
edge[edgenum] = E2;
head[to] = edgenum++;
}
网络流的复杂度为点数*边数:O(nm)
注意每条边都有一个反向弧(可以认为是反悔弧)
网络流的主要代码:
int dis[N],cur[N];//距离起点的距离 cur[i]表示i点正在考虑的边 优化不再考虑已经用过的点 初始化为head
bool vis[N];
bool BFS(int Start,int End){
//我们从残余网络找一条从Start->End的路径 (就是最短路的代码,每条边的边权为最大流量-当前流量,当这条边满流时最大流量=当前流量,边权为0)
//显然当找不到这样的路径时说明不能继续增加流量 则返回false 算法结束
memset(vis,0,sizeof(vis));
memset(dis,-1,sizeof(dis));
queue<int>Q; while(!Q.empty())Q.pop();
Q.push(Start); dis[Start]=0; vis[Start]=1;
while(!Q.empty())
{
int u = Q.front(); Q.pop();
for(int i=head[u];i!=-1;i=edge[i].nex){
Edge E =edge[i];
if(!vis[E.to] && E.cap>E.flow)
{
vis[E.to]=1;
dis[E.to]=dis[u]+1;
if(E.to==End)return true;
Q.push(E.to);
}
}
}
return false;
}
int DFS(int x, int a,int End){//我们把找到的这个路径上所有的边的当前流量都增加a(注意a是整个路径上的边中 残余流量的最小值)
if(x==End || a==0)return a;
int flow = 0, f;
for(int& i=cur[x];i!=-1;i=edge[i].nex)
{
Edge& E = edge[i];
if(dis[x]+1 == dis[E.to] && (f = DFS(E.to , Min(a, E.cap-E.flow), End))>0 )
{
E.flow += f;
edge[ i^1 ].flow -= f;//反向边要减掉
flow += f;
a -= f;
if(a==0)break;
}
}
return flow;
}
int Maxflow(int Start,int End){
int flow=0;
while(BFS(Start,End)){ //重复找路,增加路径上的流量的过程
memcpy(cur,head,sizeof(head));//把head的数组复制过去
flow += DFS(Start, inf, End);
}
return flow;
}
给出网络流完整代码:
#include <iostream>
#include <string>
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <cctype>
#include <queue>
#include <stdlib.h>
#include <cstdlib>
#include <math.h>
#include <set>
#include <vector>
#define inf 100000000
#define eps 1e-8
#define N 205
#define M 1050
#define ll int
using namespace std;
inline ll Max(ll a,ll b){return a>b?a:b;}
inline ll Min(ll a,ll b){return a<b?a:b;}
//M为边数 N为点数 点标从1-n
struct Edge{
int from,to,flow,cap, nex;
}edge[M*2];//双向边,注意RE的情况 注意这个模版是 相同起末点的边 合并流量
int head[N],edgenum;//2个要初始化-1和0
void addedge(int u,int v,int cap){//网络流要加反向弧
Edge E={u,v,0,cap,head[u]};
edge[edgenum]=E;
head[u]=edgenum++;
Edge E2={v,u,0,0,head[v]}; //这里的cap若是单向边要为0
edge[edgenum]=E2;
head[v]=edgenum++;
}
int dis[N],cur[N];//距离起点的距离 cur[i]表示i点正在考虑的边 优化不再考虑已经用过的点 初始化为head
bool vis[N];
bool BFS(int Start,int End){
memset(vis,0,sizeof(vis));
memset(dis,-1,sizeof(dis));
queue<int>Q; while(!Q.empty())Q.pop();
Q.push(Start); dis[Start]=0; vis[Start]=1;
while(!Q.empty())
{
int u = Q.front(); Q.pop();
for(int i=head[u];i!=-1;i=edge[i].nex){
Edge E =edge[i];
if(!vis[E.to] && E.cap>E.flow)
{
vis[E.to]=1;
dis[E.to]=dis[u]+1;
if(E.to==End)return true;
Q.push(E.to);
}
}
}
return false;
}
int DFS(int x, int a,int End){//流入x 的流量是a
if(x==End || a==0)return a;
int flow = 0, f;
for(int& i=cur[x];i!=-1;i=edge[i].nex)
{
Edge& E = edge[i];
if(dis[x]+1 == dis[E.to] && (f = DFS(E.to , Min(a, E.cap-E.flow), End))>0 )
{
E.flow += f;
edge[ i^1 ].flow -= f;//反向边要减掉
flow += f;
a -= f;
if(a==0)break;
}
}
return flow;
}
int Maxflow(int Start,int End){
int flow=0;
while(BFS(Start,End)){
memcpy(cur,head,sizeof(head));//把head的数组复制过去
flow += DFS(Start, inf, End);
}
return flow;
}
void init(){
memset(head, -1, sizeof(head)); edgenum = 0;
}
若不理解网络流的原理,可以暂且学会套用模版理解网络流的用法。