网络流dinic模板

#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

const int maxn = 100005,maxm = 100005;

struct node
{
    int to,next,flow;//目标点,下一条边,剩余流量

    node(void){}
    node(int a,int b,int c) : to(a),next(b),flow(c){}
}e[maxm * 2];//正向+反向弧

int d[maxn];//距离标号,距离原点的最短距离
int final[maxn],cur[maxn];
int n,m,tot,s,t;

void link(int u,int v,int c)
{
    e[++ tot] = node(v,final[u],c),final[u] = tot;
    e[++ tot] = node(u,final[v],0),final[v] = tot;
// 2 3 
    //这里保证了正,反向弧的标号连续,那么对于第i条边,其反向弧就是i^1
}

bool bfs()
{
    //用bfs找到每个点的距离标号
    static int que[maxn];
    for(int i = s;i <= t;i ++) d[i] = -1,cur[i] = final[i];
    d[s] = 0;
    que[1] = s;
    for(int fi = 1,en = 1;fi <= en;fi ++)
    {
        int u = que[fi];
        for(int i = final[u];i;i = e[i].next)
            if (e[i].flow > 0 && d[e[i].to] == -1)
            {
                d[e[i].to] = d[u] + 1;
                que[++ en] = e[i].to;
            }
    }
    return d[t] != -1;
}

int dfs(int now,int flow)
{
    if (now == t) return flow;//流完,退出
    int use = 0;
    for(int i = cur[now];i;i = e[i].next)
    {
                cur[now] = i;
        if (e[i].flow > 0 && d[e[i].to] == d[now] + 1/*只能沿着最短路走*/)
        {
            int tmp = dfs(e[i].to,min(e[i].flow,flow - use));
            use += tmp,e[i].flow -= tmp,e[i ^ 1].flow += tmp;
            if (flow == use) return use;
        }
    }
    return use;
}

int main()
{
    tot = 1;//计算反向弧时更方便
    scanf("%d%d", &n, &m);//n为点数,m为边数
    s = 1,t = n;//假定原点为s,汇点为t
    for(int i = 1;i <= m;i ++)
    {
        int u,v,c;
        scanf("%d%d%d", &u, &v, &c);//一条从u到v,流量为c的边
        link(u,v,c);
    }
    int ans = 0;
    for(;bfs()/*假如找不到证明无法增广*/;)
        ans += dfs(s,1 << 30);
    printf("%d\n", ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值