题意:给定n个点,m条有向边。
把点分成几个集合使得每个集合中的任意2点都不可达(一个集合只存放一个点也可以)
问最少需要分成几个集合。
如果没有环,则这个题目就是求有向图的最长链,拓扑序下跑bfs即可。
但是有环,所以把环缩点成新点x,而点x的点权就是x点在原图中对应的顶点个数。
缩点后就是有向无环图,继续跑一个拓扑序。
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
#define N 100010
//N为最大点数
#define M 301000
//M为最大边数
int n, m;//n m 为点数和边数
struct Edge{
int from, to, nex;
bool sign;//是否为桥
}edge[M<<1];
int head[N], edgenum;
void add(int u, int v){//边的起点和终点
Edge E={u, v, head[u], false};
edge[edgenum] = E;
head[u] = edgenum++;
}
int DFN[N], Low[N], Stack[N], top, Time; //Low[u]是点集{u点及以u点为根的子树} 中(所有反向弧)能指向的(离根最近的祖先v) 的DFN[v]值(即v点时间戳)
int taj;//连通分支标号,从1开始
int Belong[N];//Belong[i] 表示i点属于的连通分支
bool Instack[N];
vector<int> bcc[N]; //标号从1开始
void tarjan(int u ,int fa){
DFN[u] = Low[u] = ++ Time ;
Stack[top ++ ] = u ;
Instack[u] = 1 ;
for (int i = head[u] ; ~i ; i = edge[i].nex ){
int v = edge[i].to ;
if(DFN[v] == -1)
{
tarjan(v , u) ;
Low[u] = min(Low[u] ,Low[v]) ;
if(DFN[u] < Low[v])
{
edge[i].sign = 1;//为割桥
}
}
else if(Instack[v]) Low[u] = min(Low[u] ,DFN[v]) ;
}
if(Low[u] == DFN[u]){
int now;
taj ++ ; bcc[taj].clear();
do{
now = Stack[-- top] ;
Instack[now] = 0 ;
Belong [now] = taj ;
bcc[taj].push_back(now);
}while(now != u) ;
}
}
void tarjan_init(int all){
memset(DFN, -1, sizeof(DFN));
memset(Instack, 0, sizeof(Instack));
top = Time = taj = 0;
for(int i=1;i<=all;i++)if(DFN[i]==-1 )tarjan(i, i); //注意开始点标!!!
}
vector<int>G[N];
int du[N];
void suodian(){
for(int i = 1; i <= taj; i++)G[i].clear(), du[i] = 0;
for(int i = 0; i < edgenum; i++){
int u = Belong[edge[i].from], v = Belong[edge[i].to];
if(u!=v)G[u].push_back(v), du[v]++;
}
}
void init(){memset(head, -1, sizeof(head)); edgenum=0;}
int dis[N];
int bfs(){
queue<int>q;
for(int i = 1; i <= taj; i++)
if(du[i]==0){q.push(i); dis[i] = bcc[i].size();}
else dis[i] = 0;
while(!q.empty()){
int u = q.front(); q.pop();
for(int i = 0; i < G[u].size(); i++){
int v = G[u][i];
dis[v] = max(dis[u]+(int)bcc[v].size(), dis[v]);
du[v]--;
if(du[v]==0)
q.push(v);
}
}
int ans = 1;
for(int i = 1; i <= taj; i++)ans = max(ans, dis[i]);
return ans;
}
int main()
{
int i,j,u,v;
while(~scanf("%d %d",&n,&m)){
init();
while(m--){
scanf("%d %d",&u,&v); if(u!=v)
add(u,v);
}
tarjan_init(n);
suodian();
printf("%d\n",bfs());
}
return 0;
}
/*
5 5
1 2
2 3
3 4
4 1
5 1
4 4
1 2
2 3
3 4
4 1
5 3
1 2
2 3
3 4
*/