138岁的柯达身陷区块链“骗币门”



价值君注:区块链的大热,让越来越多的公司投身进入。这也包括美国老牌摄影器材制造商柯达。1月10日,柯达宣称将和Wenn Digital公司合作发布柯达币(Kodakcoin)。柯达币是一种以图片为核心的加密货币,旨在让摄影师在版权作品被售出后即刻获得报酬。无论是专业摄影师还是业余摄影爱好者都能在一个安全的区块链平台上匿名售卖其作品。


发布柯达币后,其股价盘中涨破7美元,创约三个月新高,涨幅一度超过130%,最终收涨约119.3%,收报6.80美元。而近日,对冲基金公司Kerrisdale Capital本周三(2月7日)发布了一份长达22页的报告,报告中显示,柯达公司濒临破产,实行区块链计划只是为了更好的售卖公司股票。根据Kerrisdale Capital的报告内容,柯达的区块链和加密数字货币计划只是蹭热度,并不靠谱。


本文来源区块链专业财经媒体“区块链得得”(微信ID:ChainDD)原创。未经许可不许转载,转载请注明出处和链接。


对冲基金公司Kerrisdale Capital本周三发布了一份长达22页的报告,报告中显示,柯达公司濒临破产,实行区块链计划只是为了更好的售卖公司股票。值得注意的是,Kerrisdale Capital持有柯达公司空头头寸,这个时候放出重磅的利空消息,也值得推敲。


柯达计划在1月9日发行ICO,利用区块链技术解决摄影圈的版权问题。但由于核查投资者资质,柯达推迟区块链项目ICO。


Kerrisdale Capital最新几篇推文都是和柯达有关,其中一条写到:在正式宣布柯达区块链计划的前一天,公司董事会提前得到了公司的股票,换句话说,也就是公司董事利用第二天发布的利好消息通过股票上涨从而获利。若该行为属实,明显违反了SEC的相关交易准则。


Kerrisdale Capital 最新推文


根据Kerrisdale Capital的报告内容,柯达的区块链和加密数字货币计划只是蹭热度,并不靠谱。同时,区块链和数据库专家,律师,数字内容机构创始人对柯达区块链项目持怀疑态度。同时报告也指出了柯达在进行加密版权方面存在的漏洞:


1、将图像通过区块链的形式进行加密,并不能更好的保护知识产权。尽管柯达区块链计划的负责人一直强调,“区块链可以为所有权提供一个永久的证明”,但这在图片领域并不适用。试想一个场景,如果一张照片稍微调整以下分辨率或者对比度,这些细小的变化区块链并不“知道”。


2、柯达不会将所有图像存储在区块链中,会占用太多的数据并降低性能。相反,是将在区块链中存储图像的散列, 这意味着门户网站将需要单独的系统来存储实际图像。区块链专家表示“解密区块链账本的计算成本很高,索引很差,而且他们没有现代数据库软件的优势。”通俗来说,这是不切实际的,每次有人需要更多的搜索结果时,就需要解密整个柯达区块链。 相反,柯达可能会使用一个快速的数据库引擎,可能被分割(分区) 本地化,并在Amazon AWS中托管。


3、使用柯达币作为支付摄影师没有实际意义。因为柯达币的ICO将根据SEC准则506(c)出于代币的安全性,它只会出售给被认可的投资者。这意味着除非摄影师每年有20万美元收入,或者净资产超过100万美元,才可以参加ICO。 而且这些代币在发行后一年内不能转让或出售。


Kerrisdale Capital报告首页


截至目前,柯达对此事并未做出任何回应。(本文为链得得原创,未经许可不许转载,转载请注明出处和链接。


得区块链者得天下,欢迎搜索关注区块链得得(微信ID:ChainDD)

区块链入门指南,五大精品课系随身听;碎片时间,系统学习

点击阅读原文订阅「坦白讲」区块链入门精品课 精彩不容错过
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值