acdream 1214 矩阵快速幂

题意:宽度从1到5的矩阵 然后进行染色 要求染色完以后不存在2X2的格子 完全同色的所有方案数

矩阵的长度小于10的100次

解法:看到长度的范围就应该很清楚了 矩阵快速幂啊 然后比赛中也是往这个方向去想的 然后讨论1~5各自宽度的矩阵

好吧 其实只要按照行考虑就可以了 每一行有的方案数就是2的次方啊 那么宽度5所需要的矩阵的就是32*32了

好吧 手推这个是不现实的 打表或者直接暴力处理就可以了


突然发现 这题需要大数 然后vector实现真是不能再赞了  想到自己一直没有掌握的快速幂和大数 这是什么一种心情呢?

感觉一下子就回到原点  然后又变成那个被吊打的白痴 这趟远行没有目的:这个世上没有什么偶然,有的只有必然

#include<cstdio>
#include<cstring>
#include<iostream>
#include<vector>
using namespace std;
int zt,p,n,m;
char s[111];
vector<int>g;
struct matrix{
	int mat[33][33];
	void clc(){memset(mat,0,sizeof(mat));}
}a,b;
// 00 11
// 00 11
int judge(int x,int y){
    for(int i=1;i<m;++i){
        if((x%4==0&&y%4==0)||(x%4==3&&y%4==3))return 0;
        x>>=1;y>>=1;
    }
    return 1;
}
matrix mul(matrix a,matrix b){
    matrix c;c.clc();
    for(int i=0;i<zt;++i)
        for(int j=0;j<zt;++j)
            for(int k=0;k<zt;++k)
                c.mat[i][j]=(c.mat[i][j]+a.mat[i][k]*b.mat[k][j])%p;
    return c;
}
void gao(){
    for(int i=(int)g.size()-1;i;--i){
        if(g[i]&1)g[i-1]+=10;
        g[i]/=2;
    }g[0]/=2;
    if(!g[g.size()-1])g.pop_back();
}
int main(){
    
    scanf("%s%d%d",s,&m,&p);
    
    g.clear();zt=(1<<m);
    int sz=(int)strlen(s);
    
    for(int i=sz-1;i>=0;--i)g.push_back(s[i]-'0');
    
//    ---to pow(m-1)
    --g[0];
    for(int i=0;i<g.size();++i)if(g[i]<0)g[i]+=10,g[i+1]--;
    if(!g[g.size()-1])g.pop_back();
    
    a.clc(),b.clc();
    for(int i=0;i<zt;++i)a.mat[i][i]=1;
    for(int i=0;i<zt;++i)
        for(int j=0;j<zt;++j)
            b.mat[i][j]=judge(i,j);
    
    while(!g.empty()){
        if(g[0]&1)a=mul(a,b);
        gao();b=mul(b,b);
    }

    int ans=0;
    for(int i=0;i<zt;++i)
        for(int j=0;j<zt;++j)
            ans=(ans+a.mat[i][j])%p;
    
    printf("%d\n",ans);
    
	return 0;
}


深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值