题意:对一列数字进行多种操作 把一段数字变成最近的斐波那契数 统计一段数字的和 增加单个数字的权值
解法:由于要进行成段变成斐波那契,这就需要打标记,而添加单个的权值也需要标记 这样我们就需要开两个标记
然后add标记是需要添加的值变成斐波那契数列
然后对于已经修改过的段我们就可以知道这一段就都是斐波那契数了
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
#define ll __int64
#define ls (rt<<1)
#define rs (rt<<1|1)
#define mid ((l+r)>>1)
#define maxn 111111
ll num[maxn];
ll sum[maxn<<2],add[maxn<<2];
int set[maxn<<2];
ll f[111],x;
void up(int rt,int l,int r){
sum[rt]=sum[ls]+sum[rs];
add[rt]=add[ls]+add[rs];
}
void build(int rt,int l,int r){
sum[rt]=0;set[rt]=-1;
if(l==r){
add[rt]=1;
return ;
}
build(ls,l,mid);
build(rs,mid+1,r);
up(rt,l,r);
}
void down(int rt,int l,int r){
if(set[rt]!=-1){
sum[ls]+=add[ls];
sum[rs]+=add[rs];
add[ls]=add[rs]=0;
set[ls]=set[rs]=1;
set[rt]=-1;
}
}
void ad(int rt,int l,int r,int L,int R,ll w){
if(L<=l&&r<=R){
sum[rt]+=w;
int c=(int)(lower_bound(f,f+75,sum[rt])-f);
if(c==0){
add[rt]=f[0]-sum[rt];
}
else{
if(f[c]==sum[rt]){return ;}
else if(sum[rt]-f[c-1]<=f[c]-sum[rt]){
add[rt]=f[c-1]-sum[rt];
}
else add[rt]=f[c]-sum[rt];
}
return ;
}
down(rt,l,r);
if(L<=mid)ad(ls,l,mid,L,R,w);
if(mid<R)ad(rs,mid+1,r,L,R,w);
up(rt,l,r);
}
void ins(int rt,int l,int r,int L,int R){
if(L<=l&&r<=R){
sum[rt]+=add[rt];
add[rt]=0; set[rt]=1;
return ;
}
down(rt,l,r);
if(L<=mid)ins(ls,l,mid,L,R);
if(mid<R)ins(rs,mid+1,r,L,R);
up(rt,l,r);
}
ll query(int rt,int l,int r,int L,int R){
if(L<=l&&r<=R){
return sum[rt];
}
down(rt,l,r);
ll res=0;
if(L<=mid)res+=query(ls,l,mid,L,R);
if(mid<R)res+=query(rs,mid+1,r,L,R);
return res;
}
int n,m;
int main(){
f[0]=1;f[1]=1;
for(int i=2;i<=79;++i)
f[i]=f[i-1]+f[i-2];
while(~scanf("%d%d",&n,&m)){
build(1,1,n);
int op,a,b;
for(int i=1;i<=m;++i){
scanf("%d%d%d",&op,&a,&b);
if(op==1){
ad(1,1,n,a,a,b);
}
else if(op==2){
printf("%I64d\n",query(1,1,n,a,b));
}
else if(op==3){
ins(1,1,n,a,b);
}
}
}
return 0;
}