POJ2152 树形DP

题意:这一题是陈启锋的论文中的一道题 题意是在一棵树上选取节点建立消防站 每个节点有一个代价 然后每个节点之间又有距离 距离大于每个节点承受上限的化就不能被看管 然后问题的看管所有节点最小代价是多少

解法:正确的姿势就是利用dfs进行dp 枚举每一个节点被看管的节点 然后得到的dp方式是当前节点被i节点看管的最少花费取决于每一颗 子树分别被全部看管的最佳花费或者是儿子节点也同样被i看管带来的花费

#include<cstdio>
#include<vector>
#include<limits.h>
using namespace std;
#define maxn 1111
#define INF 2147483647
#define min(a,b) (a)<(b)?(a):(b)
#define max(a,b) (a)>(b)?(a):(b)
struct edge{int v,w;}s;
vector<edge>e[maxn];
int n,cur,best[maxn],dp[maxn][maxn],dist[maxn][maxn],limit[maxn],cost[maxn];
void init(){
    for(int i=0;i<=n;++i)e[i].clear(),best[i]=INT_MAX;
    for(int i=1;i<=n;++i)
        for(int j=1;j<=n;++j)
            dp[i][j]=INT_MAX;
}
void Dis(int u,int f,int dis){
    dist[cur][u]=dis;
    for(int i=0;i<e[u].size();++i){
        int v=e[u][i].v;
        int len=e[u][i].w;
        if(v==f)continue;
        Dis(v,u,dis+len);
    }
}
void solve(int u,int f){
    for(int i=0;i<e[u].size();++i){
        if(e[u][i].v!=f)solve(e[u][i].v,u);
    }
    for(int i=1;i<=n;++i)
        if(dist[u][i]<=limit[u]){
            dp[u][i]=cost[i];
            for(int j=0;j<e[u].size();++j){
                int v=e[u][j].v;
                if(v==f)continue;
                dp[u][i]+=min(dp[v][i]-cost[i],best[v]);
            }
            best[u]=min(best[u],dp[u][i]);
        }
}
int _,a,b,c;
int main(){
    scanf("%d",&_);
    while(_--){
        scanf("%d",&n);
        init();
        for(int i=1;i<=n;++i)scanf("%d",&cost[i]);
        for(int i=1;i<=n;++i)scanf("%d",&limit[i]);
        for(int i=1;i<n;++i){
            scanf("%d%d%d",&a,&b,&c);
            s.v=b,s.w=c;
            e[a].push_back(s);
            s.v=a,s.w=c;
            e[b].push_back(s);
        }
        for(int i=1;i<=n;++i)
            cur=i,Dis(i,0,0);
        solve(1,0);
        printf("%d\n",best[1]);
        
    }
    return 0;
}


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值