TensorFlow-2: 用 CNN 识别数字

本文介绍了使用CNN改进基于softmax的数字识别模型,原模型准确率为92%。通过讲解CNN的基本构成,如Convolution、ReLU、Pooling及关键参数如stride和padding,展示了如何构建2组convolution-pooling层、全连接层和dropout来减少过拟合,以提升模型的识别性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


本文结构:

  • CNN
  • 建立模型
  • code

昨天只是用了简单的 softmax 做数字识别,准确率为 92%,这个太低了,今天用 CNN 来提高一下准确率。

关于 CNN,可以看这篇:

图解何为CNN

简单看一个典型的 Deep CNN 由若干组 Convolution-ReLU-Pooling 层组成。

这三层可以提取出有用的 pattern,但它们并不知道这些 pattern 是什么。
所以接着是 Fully Connected 层,它可以对数据进行分类。

在 CNN 中有几个重要的概念:
- stride
- padding
- pooling

stride,就是每跨多少步抽取信息。每一块抽取一部分信息,长宽就缩减,但是厚度增加。抽取的各个小块儿,再把它们合并起来,就变成一个压缩后的立方体。

padding,抽取的方式有两种,一种是抽取后的长和宽缩减,另一种是抽取后的长和宽和原来的一样。

pooling,就是当跨步比较大的时候,它会漏掉一些重要的信息,为了解决这样的问题,就加上一层叫pooling,事先把这些必要的信息存储起来,然后再变成压缩后的层:

即 Pooling 层是用来降维的。
经过 convolution 和 ReLU 的作用后,会有越来越复杂的形式,所以Pooling 层负责提取出最重要的 pattern,进而提高时间空间的效率。

patch,就是小方块的长宽的像素,in size 是image的厚度为1,out size是输出的厚度为32:


模型

主要就是建立 2 组 convolution-pooling 层,全连接层,加 dropout 减小过拟合,得到预测值 y_conv:

  • 每一层建立 weight 和 bias,
  • 和上一层的输出值经过 conv2d 作用后,应用 ReLu 激活函数,
  • 再做 pooling 后得到的输出值传递给下一层

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值