用 LSTM 做时间序列预测的一个小例子

本文通过一个航班乘客数预测的例子,演示如何利用LSTM进行时间序列预测。数据经过处理,转换为LSTM所需的格式,模型设置为1个输入、4个隐藏层神经元、sigmoid激活函数,训练后得出RMSE为22.92(训练集)和47.53(测试集)。讨论了模型改进方向,如调整隐藏层神经元数量、层数及time steps,并提及RNN在时间序列预测中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题:航班乘客预测
数据:1949 到 1960 一共 12 年,每年 12 个月的数据,一共 144 个数据,单位是 1000
下载地址
目标:预测国际航班未来 1 个月的乘客数

import numpy
import matplotlib.pyplot as plt
from pandas import read_csv
import math
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
%matplotlib inline

导入数据:

# load the dataset
dataframe = read_csv('international-airline-passengers.csv', usecols=[1], engine='python', skipfooter=3)
dataset = dataframe.values
# 将整型变为float
dataset = dataset.astype('float
评论 97
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值