用 Tensorflow 建立 CNN

原创 2017年05月01日 11:58:20

稍稍乱入的CNN,本文依然是学习周莫烦视频的笔记。

还有 google 在 udacity 上的 CNN 教程。

CNN(Convolutional Neural Networks) 卷积神经网络简单讲就是把一个图片的数据传递给CNN,原涂层是由RGB组成,然后CNN把它的厚度加厚,长宽变小,每做一层都这样被拉长,最后形成一个分类器:

如果想要分成十类的话,那么就会有0到9这十个位置,这个数据属于哪一类就在哪个位置上是1,而在其它位置上为零。

在 RGB 这个层,每一次把一块核心抽出来,然后厚度加厚,长宽变小,形成分类器:

在 CNN 中有几个重要的概念:
- stride
- padding
- pooling

stride,就是每跨多少步抽取信息。每一块抽取一部分信息,长宽就缩减,但是厚度增加。抽取的各个小块儿,再把它们合并起来,就变成一个压缩后的立方体。

padding,抽取的方式有两种,一种是抽取后的长和宽缩减,另一种是抽取后的长和宽和原来的一样。

pooling,就是当跨步比较大的时候,它会漏掉一些重要的信息,为了解决这样的问题,就加上一层叫pooling,事先把这些必要的信息存储起来,然后再变成压缩后的层:

patch, 就是小方块的长宽的像素,in size 是image的厚度为1,out size是输出的厚度为32:

CNN的结构,分析一张图片时,先放一个CNN的图层,再把这个图层进行一个pooling。这样可以比较好的保持信息,之后再加第二层的CNN和pooling。

导入一个图片之后,先是有它的RGB三个图层,然后把像素块缩小变厚。本来有三个厚度,然后把它变成八个厚度,它的长宽在不断的减小,最后把它们连接在一起:

下面就是用 tensorflow 构建一个 CNN 的代码,
里面主要有4个layer,分别是:
1. convolutional layer1 + max pooling;
2. convolutional layer2 + max pooling;
3. fully connected layer1 + dropout;
4. fully connected layer2 to prediction.

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# number 1 to 10 data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

def compute_accuracy(v_xs, v_ys):
    global prediction
    y_pre = sess.run(prediction, feed_dict={xs: v_xs, keep_prob: 1})
    correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_ys,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys, keep_prob: 1})
    return result

# 产生随机变量,符合 normal 分布
# 传递 shape 就可以返回weight和bias的变量
def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)    
    return tf.Variable(initial)                         

def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)

# 定义2维的 convolutional 图层
def conv2d(x, W):
    # stride [1, x_movement, y_movement, 1]
    # Must have strides[0] = strides[3] = 1
    # strides 就是跨多大步抽取信息
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')     

# 定义 pooling 图层
def max_pool_2x2(x):
    # stride [1, x_movement, y_movement, 1]
    # 用pooling对付跨步大丢失信息问题
    return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')        

# define placeholder for inputs to network
xs = tf.placeholder(tf.float32, [None, 784])        # 784=28x28
ys = tf.placeholder(tf.float32, [None, 10])
keep_prob = tf.placeholder(tf.float32)
x_image = tf.reshape(xs, [-1, 28, 28, 1])           # 最后一个1表示数据是黑白的
# print(x_image.shape)  # [n_samples, 28,28,1]

## 1. conv1 layer ##
#  把x_image的厚度1加厚变成了32
W_conv1 = weight_variable([5, 5, 1, 32])                # patch 5x5, in size 1, out size 32
b_conv1 = bias_variable([32])
# 构建第一个convolutional层,外面再加一个非线性化的处理relu
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)            # output size 28x28x32
# 经过pooling后,长宽缩小为14x14
h_pool1 = max_pool_2x2(h_conv1)                                     # output size 14x14x32

## 2. conv2 layer ##
# 把厚度32加厚变成了64
W_conv2 = weight_variable([5,5, 32, 64])                # patch 5x5, in size 32, out size 64
b_conv2 = bias_variable([64])
# 构建第二个convolutional层
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)            # output size 14x14x64
# 经过pooling后,长宽缩小为7x7
h_pool2 = max_pool_2x2(h_conv2)                                     # output size 7x7x64

## 3. func1 layer ##
# 飞的更高变成1024
W_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])
# [n_samples, 7, 7, 64] ->> [n_samples, 7*7*64]
# 把pooling后的结果变平
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

## 4. func2 layer ##
# 最后一层,输入1024,输出size 10,用 softmax 计算概率进行分类的处理
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)


# the error between prediction and real data
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),
                                              reduction_indices=[1]))       # loss
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

sess = tf.Session()
# important step
sess.run(tf.initialize_all_variables())

for i in range(1000):
    batch_xs, batch_ys = mnist.train.next_batch(100)
    sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys, keep_prob: 0.5})
    if i % 50 == 0:
        print(compute_accuracy(
            mnist.test.images, mnist.test.labels))

推荐阅读
历史技术博文链接汇总
也许可以找到你想要的

版权声明:本文为博主原创文章,未经博主允许不得转载。

用tensorflow搭建CNN

利用tensorflow搭建CNN,也就是卷积神经网络是一件很简单的事情,笔者按照官方教程中使用MNIST手写数字识别为例展开代码,整个程序也基本与官方例程一致,不过在比较容易迷惑的地方加入了注释,有...
  • freedom098
  • freedom098
  • 2016年07月15日 16:22
  • 5380

Tensorflow版TextCNN主要代码解析

上一篇转载了一些大规模文本分类的方法,其中就有TextCNN,这篇博客就主要解析一下Tensorflow版TextCNN的主要代码。 import tensorflow as tf import n...
  • u013818406
  • u013818406
  • 2017年04月07日 14:15
  • 7006

卷积神经网络CNN原理以及TensorFlow实现

在知乎上看到一段介绍卷积神经网络的文章,感觉讲的特别直观明了,我整理了一下。首先介绍原理部分。        通过一个图像分类问题介绍卷积神经网络是如何工作的。下面是卷积神经网络判断一个图片是否包...
  • xukaiwen_2016
  • xukaiwen_2016
  • 2017年04月27日 23:10
  • 13838

tensorflow笔记:多层CNN代码分析

在之前的tensorflow笔记:流程,概念和简单代码注释 文章中,已经大概解释了tensorflow的大概运行流程,并且提供了一个mnist数据集分类器的简单实现。当然,因为结构简单,最后的准确率在...
  • u014595019
  • u014595019
  • 2016年10月03日 18:05
  • 27732

Tensorflow函数:tf.nn.softmax_cross_entropy_with_logits 讲解

首先把Tensorflow英文API搬过来: tf.nn.softmax_cross_entropy_with_logits(_sentinel=None, labels=None, logits=N...
  • yangyang_liu
  • yangyang_liu
  • 2017年04月13日 17:22
  • 3371

TensorFlow中cnn-cifar10样例代码详解

TensorFlow是一个支持分布式的深度学习框架,在Google的推动下,它正在变得越来越普及。我最近学了TensorFlow教程上的一个例子,即采用CNN对cifar10数据集进行分类。在看源代码...
  • diligent_321
  • diligent_321
  • 2016年11月11日 17:44
  • 16016

CNN与句子分类之动态池化方法DCNN--TensorFlow实现篇

本文是paper“A Convolutional Neural Network for Modelling Sentences”基于TensorFlow的实现方法,代码和数据集都可以到我的github...
  • liuchonge
  • liuchonge
  • 2017年03月29日 16:34
  • 2761

TensorFlow学习笔记2:构建CNN模型

深度学习模型 TensorFlow很适合用来进行大规模的数值计算,其中也包括实现和训练深度神经网络模型。下面将介绍TensorFlow中模型的基本组成部分,同时将构建一个CNN模型来对MNIST数据...
  • zyhzyh99
  • zyhzyh99
  • 2016年12月10日 16:26
  • 1792

从理论到实践,手把手教你如何用 TensorFlow 实现 CNN

一、CNN的引入 在人工的全连接神经网络中,每相邻两层之间的每个神经元之间都是有边相连的。当输入层的特征维度变得很高时,这时全连接网络需要训练的参数就会增大很多,计算速度就会变得很慢,例如一张黑...
  • arag2009
  • arag2009
  • 2017年05月10日 16:55
  • 904

TensorFlow入门-MNIST & CNN

参考TensorFLow官方教程Deep MNIST for Experts实现用CNN识别手写数字,数据集MNIST。# load MNIST data from tensorflow.exampl...
  • muyiyushan
  • muyiyushan
  • 2017年03月10日 17:26
  • 3931
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:用 Tensorflow 建立 CNN
举报原因:
原因补充:

(最多只允许输入30个字)