多任务深度学习代码

转载 2016年08月29日 11:09:56

转载自:多任务深度学习
基于Caffe实现多任务学习的小样例

本节在目前广泛使用的深度学习开源框架Caffe的基础上实现多任务深度学习算法所需的多维标签输入。默认的,Caffe中的Data层只支持单维标签,为了支持多维标签,首先修改Caffe中的convert_imageset.cpp以支持多标签:

这样我们就有了多任务的深度学习的基础部分数据输入。为了向上兼容Caffe框架,本文摒弃了部分开源实现增加Data层标签维度选项并修改Data层代码的做法,直接使用两个Data层将数据读入,即分别读入数据和多维标签,接下来介绍对应的网络结构文件prototxt的修改,注意红色的注释部分。

特别的,slice层对多维的标签进行了切分,为每个任务输出了单独的标签。

另外一个值得讨论的是每个任务的权重设置,在本文实践中五个任务设置为等权重loss_weight:0.2。一般的,建议所有任务的权重值相加为1,如果这个数值不设置,可能会导致网络收敛不稳定,这是因为多任务学习中对不同任务的梯度进行累加,导致梯度过大,甚至可能引发参数溢出错误导致网络训练失败。



作者:程程
链接:https://zhuanlan.zhihu.com/p/22190532
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

多任务损失函数层的网络结构示意图如下图所示:





// This program converts a set of images to a lmdb/leveldb by storing them
// as Datum proto buffers.
// Usage:
// convert_imageset [FLAGS] ROOTFOLDER/ LISTFILE DB_NAME
//
// where ROOTFOLDER is the root folder that holds all the images, and LISTFILE
// should be a list of files as well as their labels, in the format as
// subfolder1/file1.JPEG 7
// ....
 
 
 
//#ifdef MULTILABEL
 
 
 
#include <algorithm>
#include <fstream> // NOLINT(readability/streams)
#include <string>
#include <utility>
#include <vector>
 
#include "boost/scoped_ptr.hpp"
#include "gflags/gflags.h"
#include "glog/logging.h"
 
#include "caffe/proto/caffe.pb.h"
#include "caffe/util/db.hpp"
#include "caffe/util/format.hpp"
#include "caffe/util/io.hpp"
#include "caffe/util/rng.hpp"
 
using namespace caffe; // NOLINT(build/namespaces)
using std::pair;
using boost::scoped_ptr;
 
DEFINE_bool(gray, false,
"When this option is on, treat images as grayscale ones");
DEFINE_bool(shuffle, false,
"Randomly shuffle the order of images and their labels");
DEFINE_string(backend, "lmdb",
"The backend {lmdb, leveldb} for storing the result");
DEFINE_int32(resize_width, 0, "Width images are resized to");
DEFINE_int32(resize_height, 0, "Height images are resized to");
DEFINE_bool(check_size, false,
"When this option is on, check that all the datum have the same size");
DEFINE_bool(encoded, false,
"When this option is on, the encoded image will be save in datum");
DEFINE_string(encode_type, "",
"Optional: What type should we encode the image as ('png','jpg',...).");
 
int main(int argc, char** argv) {
#ifdef USE_OPENCV
::google::InitGoogleLogging(argv[0]);
// Print output to stderr (while still logging)
FLAGS_alsologtostderr = 1;
 
#ifndef GFLAGS_GFLAGS_H_
namespace gflags = google;
#endif
 
gflags::SetUsageMessage("Convert a set of images to the leveldb/lmdb\n"
"format used as input for Caffe.\n"
"Usage:\n"
" convert_imageset [FLAGS] ROOTFOLDER/ LISTFILE DB_NAME\n"
"The ImageNet dataset for the training demo is at\n"
" http://www.image-net.org/download-images\n");
gflags::ParseCommandLineFlags(&argc, &argv, true);
 
if (argc < 6) {
gflags::ShowUsageWithFlagsRestrict(argv[0], "tools/convert_imageset");
return 1;
}
 
const bool is_color = !FLAGS_gray;
const bool check_size = FLAGS_check_size;
const bool encoded = FLAGS_encoded;
const string encode_type = FLAGS_encode_type;
 
std::ifstream infile(argv[2]);
std::vector<std::pair<std::string, std::vector<float>> > lines;
std::string filename;
 
std::string label_count_string = argv[5];
int label_count = std::atoi(label_count_string.c_str());
 
std::vector<float> label(label_count);
 
while (infile >> filename)
{
for (int i = 0; i < label_count;i++)
{
infile >> label[i];
 
}
lines.push_back(std::make_pair(filename, label));
}
if (FLAGS_shuffle) {
// randomly shuffle data
LOG(INFO) << "Shuffling data";
shuffle(lines.begin(), lines.end());
}
LOG(INFO) << "A total of " << lines.size() << " images.";
 
if (encode_type.size() && !encoded)
LOG(INFO) << "encode_type specified, assuming encoded=true.";
 
int resize_height = std::max<int>(0, FLAGS_resize_height);
int resize_width = std::max<int>(0, FLAGS_resize_width);
 
// Create new DB
scoped_ptr<db::DB> db_image(db::GetDB(FLAGS_backend));
scoped_ptr<db::DB> db_label(db::GetDB(FLAGS_backend));
db_image->Open(argv[3], db::NEW);
db_label->Open(argv[4], db::NEW);
scoped_ptr<db::Transaction> txn_image(db_image->NewTransaction());
scoped_ptr<db::Transaction> txn_label(db_label->NewTransaction());
 
// Storing to db
std::string root_folder(argv[1]);
Datum datum_label;
Datum datum_image;
int count = 0;
int data_size_label = 0;
int data_size_image = 0;
bool data_size_initialized = false;
 
for (int line_id = 0; line_id < lines.size(); ++line_id) {
bool status;
std::string enc = encode_type;
if (encoded && !enc.size()) {
// Guess the encoding type from the file name
string fn = lines[line_id].first;
size_t p = fn.rfind('.');
if (p == fn.npos)
LOG(WARNING) << "Failed to guess the encoding of '" << fn << "'";
enc = fn.substr(p);
std::transform(enc.begin(), enc.end(), enc.begin(), ::tolower);
}
 
status = ReadImageToDatum(root_folder + lines[line_id].first,
lines[line_id].second[0], resize_height, resize_width, is_color,
enc, &datum_image);
if (status == false) continue;
 
datum_label.set_height(1);
datum_label.set_width(1);
datum_label.set_channels(label_count);
int count_tmp = datum_label.float_data_size();
for (int index_label = 0; index_label < lines[line_id].second.size(); index_label++)
{
float tmp_float_value = lines[line_id].second[index_label];
datum_label.add_float_data(tmp_float_value);
}
 
if (check_size) {
if (!data_size_initialized) {
data_size_label = datum_label.channels() * datum_label.height() * datum_label.width();
data_size_image = datum_image.channels() * datum_image.height() * datum_image.width();
data_size_initialized = true;
}
else {
const std::string& data_label = datum_label.data();
CHECK_EQ(data_label.size(), data_size_label) << "Incorrect data field size "
<< data_label.size();
 
const std::string& data_image = data_image.data();
CHECK_EQ(data_image.size(), data_size_image) << "Incorrect data field size "
<< data_image.size();
}
}
// sequential
string key_str_image = caffe::format_int(line_id, 8) + "_" + lines[line_id].first;
string key_str_label = caffe::format_int(line_id, 8) + "label_" + lines[line_id].first;
 
// Put in db
string out_label;
string out_image;
CHECK(datum_label.SerializeToString(&out_label));
CHECK(datum_image.SerializeToString(&out_image));
 
datum_label.clear_float_data();
txn_label->Put(key_str_label, out_label);
txn_image->Put(key_str_image, out_image);
if (++count % 1000 == 0) {
// Commit db
txn_image->Commit();
txn_image.reset(db_image->NewTransaction());
 
txn_label->Commit();
txn_label.reset(db_label->NewTransaction());
LOG(INFO) << "Processed " << count << " files.";
}
 
}
// write the last batch
if (count % 1000 != 0) {
txn_label->Commit();
txn_image->Commit();
LOG(INFO) << "Processed " << count << " files.";
}
#else
LOG(FATAL) << "This tool requires OpenCV; compile with USE_OPENCV.";
#endif // USE_OPENCV
return 0;
}
 
 
//#endif

多任务学习(Multi-task learning)

多任务学习(Multi-task learning)是和单任务学习(single-task learning)相对的一种机器学习方法。在机器学习领域,标准的算法理论是一次学习一个任务,也就是系统的输出...
  • u014221266
  • u014221266
  • 2016年10月24日 14:45
  • 6205

多任务深度学习(MultiTask Learning)

多任务学习给出多个监督信息(标签),利用任务之间的相关性互相促进。案例1-人脸识别香港中文大学汤晓鸥组发表在NIPS14的论文《Deep Learning Face Representation by...
  • u012938704
  • u012938704
  • 2016年09月29日 16:48
  • 6690

Multi-task learning(多任务学习)简介

1. 什么是Multi-task learning? Multi-tasklearning (多任务学习)是和single-task learning (单任务学习)相对的一种机器学习方法。拿大家经...
  • u013854886
  • u013854886
  • 2014年08月07日 21:30
  • 13776

Tensorflow 多任务学习

之前在caffe上实现了两个标签的多任务学习,如今换到了tensorflow,也想尝试一下,总的来说也不是很复杂。建立多任务图多任务的一个特点是单个tensor输入(X),多个输出(Y_1,Y_2.....
  • Yan_Joy
  • Yan_Joy
  • 2017年03月15日 20:24
  • 2496

模型汇总-14 多任务学习-Multitask Learning概述

1、单任务学习VS多任务学习 单任务学习:一次只学习一个任务(task),大部分的机器学习任务都属于单任务学习。 多任务学习:把多个相关(related)的任务放在一起学习,同时学习多个任...
  • lqfarmer
  • lqfarmer
  • 2017年06月16日 10:52
  • 1155

caffe多任务学习之多标签分类

最近在参加一个行人精细化识别的竞赛,项目里涉及了许多类别的分类,原本打算一个大的类别训练一个分类模型,但是这样会比较麻烦,对于同一图片的分类会重复计算分类网络中的卷积层,浪费计算时间和效率。后来发现现...
  • xjz18298268521
  • xjz18298268521
  • 2016年11月15日 20:50
  • 8435

使用多任务学习方法进行人脸特征点和属性检测

使用多任务学习方法进行人脸特征点和属性检测
  • zx0614shenluo
  • zx0614shenluo
  • 2017年04月02日 21:31
  • 715

多任务学习代码

转载自:多任务学习代码 Convex Multi-task Feature Learning 是一篇比较经典的文章,代码点击这里可以下载。 还有一篇是Multi-Task Feature Learn...
  • alwaystry
  • alwaystry
  • 2016年09月06日 16:17
  • 358

caffe多任务学习之多标签分类

最近在参加一个识别的竞赛,项目里涉及了许多类别的分类,原本打算一个大的类别训练一个分类模型,但是这样会比较麻烦,对于同一图片的分类会重复计算分类网络中的卷积层,浪费计算时间和效率。后来发现现在深度学习...
  • Scythe666
  • Scythe666
  • 2017年12月03日 17:08
  • 163

Caffe 源码添加多标签

Caffe 的源码仅适用于模式分类问题,其标签是一维的。为了能够将 Caffe 代码应用于车辆的检测问题上,首先要解决的问题就是将 Caffe 源码中与标签相关的代码由一维改为多维。本项目由于只需预测...
  • chunxia75qin
  • chunxia75qin
  • 2016年01月06日 16:59
  • 1750
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:多任务深度学习代码
举报原因:
原因补充:

(最多只允许输入30个字)