最长单调递增子序列O(NlogN)算法

转载 2015年11月19日 11:23:48

O(NlgN)算法

假设存在一个序列d[1..9] ={ 2,1 ,5 ,3 ,6,4, 8 ,9, 7},可以看出来它的LIS长度为5。
 下面一步一步试着找出它。
 我们定义一个序列B,然后令 i = 1 to 9 逐个考察这个序列。
 此外,我们用一个变量Len来记录现在最长算到多少了

 首先,把d[1]有序地放到B里,令B[1] = 2,就是说当只有1一个数字2的时候,长度为1的LIS的最小末尾是2。这时Len=1

然后,把d[2]有序地放到B里,令B[1] = 1,就是说长度为1的LIS的最小末尾是1,d[1]=2已经没用了,很容易理解吧。这时Len=1

接着,d[3] = 5,d[3]>B[1],所以令B[1+1]=B[2]=d[3]=5,就是说长度为2的LIS的最小末尾是5,很容易理解吧。这时候B[1..2] = 1, 5,Len=2

再来,d[4] = 3,它正好加在1,5之间,放在1的位置显然不合适,因为1小于3,长度为1的LIS最小末尾应该是1,这样很容易推知,长度为2的LIS最小末尾是3,于是可以把5淘汰掉,这时候B[1..2] = 1, 3,Len = 2

继续,d[5] = 6,它在3后面,因为B[2] = 3, 而6在3后面,于是很容易可以推知B[3] = 6, 这时B[1..3] = 1, 3, 6,还是很容易理解吧? Len = 3 了噢。

 第6个, d[6] = 4,你看它在3和6之间,于是我们就可以把6替换掉,得到B[3] = 4。B[1..3] = 1, 3, 4, Len继续等于3

第7个, d[7] = 8,它很大,比4大,嗯。于是B[4] = 8。Len变成4了

 第8个, d[8] = 9,得到B[5] = 9,嗯。Len继续增大,到5了。

 最后一个, d[9] = 7,它在B[3] = 4和B[4] = 8之间,所以我们知道,最新的B[4] =7,B[1..5] = 1, 3, 4, 7, 9,Len = 5。

 于是我们知道了LIS的长度为5。
原文出处:原文链接

/*******************最长单调递增子序列**********************/
#include<stdio.h>
#define M 9
void INIT_MAP(int L[]){
	for(int i=0;i<M;i++){
		scanf("%d",&L[i]);
	}
}

void procs(const int L[],int B[],int &len){
	int flag=0;
	for(int i=1;i<M;i++){
		printf("执行第%d次\n",i);
		flag=0;
		for(int j=0;j<=len;j++){
			if(L[i]<=B[j]){
				B[j]=L[i];
				flag=1;
				break;
			}
		}
		if(flag==0){
			B[len+1]=L[i];
			len++;
		}
	}
}
void SHOW(const int array[]){
	for(int i=0;i<M;i++){
		printf("%d ",array[i]);
	}
	printf("\n");
}
void main(){
	int L[M];
	INIT_MAP(L);
	int B[M]={0};
	B[0]=L[0];
	int len=0;
	procs(L,B,len);
	printf("长度是%d\n",len);
	SHOW(L);
	SHOW(B);
} 

找出n个数组成的最长单调递增子序列( 动态规划O(nlogn) )

题目:       给出一个由n个数组成的序列x[1..n],找出它的最长单调上升子序列。即求最大的m和a1,a2……,am,使得a1   分析:       这也是一道动态规划...

最长单调递增子序列O(nlogn)

#include "iostream" #include "fstream" using namespace std;/* b[k]表示长度为i的子序列c[i]中,长度为k的最长单调递增子序列的最小结...

最长单调递增子序列 o(n^2),o(nlogn)

最长递增子序列 时间复杂度为o(n^2): #include #include #include #include #include using namespace std; int a[100]=...

最长递增子序列O(NlogN)算法

转载出处:https://www.felix021.com/blog/read.php?1587最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS。 ...

最长递增子序列(LIS)的O(NlogN)打印算法

题目: 求一个一维数组arr[n]中的最长递增子序列的长度,如在序列1,5,8,3,6,7中,最长递增子序列长度为4 (即1,3,6,7)。 方法一:一般的DP方法(O(N^2)) 像LC...

最长递增子序列 O(NlogN)算法

http://www.felix021.com/blog/read.php?1587 今天回顾WOJ1398,发现了这个当时没有理解透彻的算法。 看了好久好久,现在终于想明白了。 试着把...
  • youqika
  • youqika
  • 2013年12月05日 10:10
  • 436

最长递增子序列 O(NlogN)算法

今天学习了求最长递增子序列这个题的O(NlogN)的解法。记录一下大概的思路,要不然过一段时间又该忘了。 基本思路就是维护一个数组,假设为DP。DP[i]所记录的是,在原始数组的所有长度为i+1的单调...

最长递增子序列 O(NlogN)算法

原博客地址:http://www.felix021.com/blog/tb.php?t=1587&extra=f46f2 今天回顾WOJ1398,发现了这个当时没有理解透彻的算法。 看了好久好久,现在...

最长递增子序列 O(NlogN)算法,mark数组。ZOJ Problem Set - 2319— Beautiful People

题意:题目让求n对数中,最多有多少对满足题意的数字,并输出他们的编号(如果一对数的两个数字都分别大于另一对数的两个数,那么这两个就是符合题意的,求最多能有多少对(他们中的任意两个都要符合题意)) 思路...

最长递增子序列 O(NlogN)算法

最长递增子序列 O(NlogN)算法今天回顾WOJ1398,发现了这个当时没有理解透彻的算法。 看了好久好久,现在终于想明白了。 试着把它写下来,让自己更明白。最长递增子序列,Longest In...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:最长单调递增子序列O(NlogN)算法
举报原因:
原因补充:

(最多只允许输入30个字)