最长单调递增子序列O(NlogN)算法

转载 2015年11月19日 11:23:48

O(NlgN)算法

假设存在一个序列d[1..9] ={ 2,1 ,5 ,3 ,6,4, 8 ,9, 7},可以看出来它的LIS长度为5。
 下面一步一步试着找出它。
 我们定义一个序列B,然后令 i = 1 to 9 逐个考察这个序列。
 此外,我们用一个变量Len来记录现在最长算到多少了

 首先,把d[1]有序地放到B里,令B[1] = 2,就是说当只有1一个数字2的时候,长度为1的LIS的最小末尾是2。这时Len=1

然后,把d[2]有序地放到B里,令B[1] = 1,就是说长度为1的LIS的最小末尾是1,d[1]=2已经没用了,很容易理解吧。这时Len=1

接着,d[3] = 5,d[3]>B[1],所以令B[1+1]=B[2]=d[3]=5,就是说长度为2的LIS的最小末尾是5,很容易理解吧。这时候B[1..2] = 1, 5,Len=2

再来,d[4] = 3,它正好加在1,5之间,放在1的位置显然不合适,因为1小于3,长度为1的LIS最小末尾应该是1,这样很容易推知,长度为2的LIS最小末尾是3,于是可以把5淘汰掉,这时候B[1..2] = 1, 3,Len = 2

继续,d[5] = 6,它在3后面,因为B[2] = 3, 而6在3后面,于是很容易可以推知B[3] = 6, 这时B[1..3] = 1, 3, 6,还是很容易理解吧? Len = 3 了噢。

 第6个, d[6] = 4,你看它在3和6之间,于是我们就可以把6替换掉,得到B[3] = 4。B[1..3] = 1, 3, 4, Len继续等于3

第7个, d[7] = 8,它很大,比4大,嗯。于是B[4] = 8。Len变成4了

 第8个, d[8] = 9,得到B[5] = 9,嗯。Len继续增大,到5了。

 最后一个, d[9] = 7,它在B[3] = 4和B[4] = 8之间,所以我们知道,最新的B[4] =7,B[1..5] = 1, 3, 4, 7, 9,Len = 5。

 于是我们知道了LIS的长度为5。
原文出处:原文链接

/*******************最长单调递增子序列**********************/
#include<stdio.h>
#define M 9
void INIT_MAP(int L[]){
	for(int i=0;i<M;i++){
		scanf("%d",&L[i]);
	}
}

void procs(const int L[],int B[],int &len){
	int flag=0;
	for(int i=1;i<M;i++){
		printf("执行第%d次\n",i);
		flag=0;
		for(int j=0;j<=len;j++){
			if(L[i]<=B[j]){
				B[j]=L[i];
				flag=1;
				break;
			}
		}
		if(flag==0){
			B[len+1]=L[i];
			len++;
		}
	}
}
void SHOW(const int array[]){
	for(int i=0;i<M;i++){
		printf("%d ",array[i]);
	}
	printf("\n");
}
void main(){
	int L[M];
	INIT_MAP(L);
	int B[M]={0};
	B[0]=L[0];
	int len=0;
	procs(L,B,len);
	printf("长度是%d\n",len);
	SHOW(L);
	SHOW(B);
} 

最长递增子序列O(NlogN)算法(leetcode 300. Longest Increasing Subsequence )

最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS。 排序+LCS算法 以及 DP算法就忽略了,这两个太容易理解了。 假设存在一个序列d[1....
  • jiary5201314
  • jiary5201314
  • 2016年04月16日 21:06
  • 2298

单调递增最长子序列 O(nlogn)

单调递增最长子序列 时间限制:3000 ms  |  内存限制:65535 KB 难度:4 描述求一个字符串的最长递增子序列的长度 如:dabdbf最长递增子序列就是abdf,长度为4 ...
  • u011455899
  • u011455899
  • 2014年02月15日 12:24
  • 721

最长递增子序列LIS的O(nlogn)的求法

最长递增子序列(Longest Increasing Subsequence)是指n个数的序列的最长单调递增子序列。比如,A = [1,3,6,7,9,4,10,5,6]的LIS是1 3 6 7 9 ...
  • u012505432
  • u012505432
  • 2016年08月17日 10:57
  • 496

最长单调递增子序列O(nlogn)

#include "iostream" #include "fstream" using namespace std;/* b[k]表示长度为i的子序列c[i]中,长度为k的最长单调递增子序列的最小结...
  • u012319493
  • u012319493
  • 2015年11月17日 14:39
  • 305

算法_动态规划_最长单调递增子序列问题(O(nlogn)的时间复杂度)

import java.util.Scanner;public class Main { static int n; static int[] arr; static int[...
  • huangxiang360729
  • huangxiang360729
  • 2016年04月07日 23:23
  • 670

找出n个数组成的最长单调递增子序列( 动态规划O(nlogn) )

题目:       给出一个由n个数组成的序列x[1..n],找出它的最长单调上升子序列。即求最大的m和a1,a2……,am,使得a1   分析:       这也是一道动态规划...
  • morninghapppy
  • morninghapppy
  • 2012年06月07日 20:24
  • 3724

最长递增子序列(LIS)的O(NlogN)打印算法

题目: 求一个一维数组arr[n]中的最长递增子序列的长度,如在序列1,5,8,3,6,7中,最长递增子序列长度为4 (即1,3,6,7)。 方法一:一般的DP方法(O(N^2)) 像LC...
  • synapse7
  • synapse7
  • 2013年09月17日 09:39
  • 4497

nyist oj 17 单调递增最长子序列 (动态规划经典题)

单调递增最长子序列 时间限制:3000 ms  |  内存限制:65535 KB 难度:4 描述求一个字符串的最长递增子序列的长度 如:dabdbf最长递增子序列就是abd...
  • u014253173
  • u014253173
  • 2014年08月15日 11:37
  • 4498

最长递增子序列 O nlgn时间复杂度

[编程题]最长递增子序列 对于一个数字序列,请设计一个复杂度为O(nlogn)的算法,返回该序列的最长上升子序列的长度,这里的子序列定义为这样一个序列U1,U2...,其中Ui ...
  • u012605629
  • u012605629
  • 2015年08月28日 15:17
  • 890

最长单调递增子序列的三种解法

动规基础:最长递增子序列的三种解法。附详解和代码。第一种:转化成LCS问题求解O(n*n)。第二种:设d[i]为以第i个元素结尾的最长递增子序列的长度O(n*n)。第三种:二分查找优化O(nlogn)...
  • u012198382
  • u012198382
  • 2014年05月04日 21:20
  • 3178
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:最长单调递增子序列O(NlogN)算法
举报原因:
原因补充:

(最多只允许输入30个字)