初识贝叶斯网络

本文介绍了贝叶斯网络,它是贝叶斯分类算法的一种,区别于朴素贝叶斯算法的独立假设,贝叶斯网络允许属性之间的关联。文章通过举例说明了贝叶斯网络在处理关联问题上的优势,并提供了计算概率的公式及代码实现链接,帮助读者深入理解这一算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

一看到贝叶斯网络,马上让人联想到的是5个字,朴素贝叶斯,在所难免,NaiveByes的知名度确实会被贝叶斯网络算法更高一点。其实不管是朴素贝叶斯算法,还是今天我打算讲述的贝叶斯网络算法也罢,归根结底来说都是贝叶斯系列分类算法,他的核心思想就是基于概率学的知识进行分类判断,至于分类得到底准不准,大家尽可以自己用数据集去测试测试。OK,下面进入正题--贝叶斯网络算法。

朴素贝叶斯

一般我在介绍某种算法之前,都事先会学习一下相关的算法,以便于新算法的学习,而与贝叶斯网络算法相关性比较大的在我看来就是朴素贝叶斯算法,而且前段时间也恰好学习过,简单的来说,朴素贝叶斯算法的假设条件是各个事件相互独立,然后利用贝叶斯定理,做概率的计算,于是这个算法的核心就是就是这个贝叶斯定理的运用了喽,不错,贝叶斯定理的确很有用,他是基于条件概率的先验概率和后验概率的转换公式,这么说有点抽象,下面是公式的表达式:

大学里概率学的课本上都有介绍过的,这个公式的好处在于对于一些比较难直接得出的概率通过转换后的概率计算可得,一般是把决策属性值放在先验属性中,当做目标值,然后通过决策属性值的后验概率计算所得。具体请查看我的朴素贝叶斯算法介绍

贝叶斯网络

下面这个部分就是文章的主题了,贝叶斯网络,里面有2个字非常关键,就是网络,网络代表的潜在意思有2点,第一是有结构的,第二存在关联,我们可以马上联想到DAG有向无环图。不错,存在关联的这个特点就是与朴素贝叶斯算法最大的一个不同点,因为朴素贝叶斯算法在计算概率值上是假设各个事务属性是相互独立的,但是理性的思考一下,其实这个很难做到,任何事务,如果你仔细去想想,其实都还是有点联系的。比如这里有个例子:

在SNS社区中检验账号的真实性

如果用朴素贝叶斯来做的话,就会是这样的假设:

i、真实账号比非真实账号平均具有更大的日志密度、各大的好友密度以及更多的使用真实头像。
ii、日志密度、好友密度和是否使用真实头像在账号真实性给定的条件下是独立的。

但是其实往深入一想,使用真实的头像其实是会提高人家添加你为好友的概率的,所以在这个条件的独立其实是有问题的,所以在贝叶斯网络中是允许关联的存在的,假设就变为如下:

i、真实账号比非真实账号平均具有更大的日志密度、各大的好友密度以及更多的使用真实头像。
ii、日志密度与好友密度、日志密度与是否使用真实头像在账号真实性给定的条件下是独立的。
iii、使用真实头像的用户比使用非真实头像的用户平均有更大的好友密度。

在贝叶斯网络中,会用一张DAG来表示,每个节点代表某个属性事件,每条边代表其中的条件概率,如下:


贝叶斯网络概率的计算

贝叶斯网络概率的计算很简单,是从联合概率分布公式中变换所得,下面是联合概率分布公式:

全概率分布可以回答相关领域的任何问题,但随着变量数目的增 加,全概率分布的联合取值空间却可能变得很大。另外,对所有的原 子事实给出概率,对用户来说也非常困难。 若使用Bayes 规则,就可以利用变量之间的条件独立关系简化计 算过程,大大降低所需要声明的条件概率的数目。我们可以用一个叫 作Bayesian 的数据结构来表示变量之间的依赖关系,并为全概率分 布给出一个简明的表示。 定义(Bayesian ):Bayesian T 是一个三元组(N,A,P),其 中 1. N 是节点集合 2. A 是有向弧集合,与N 组成有限非循环图G =(N,A) 3. P {p(V | ) :V N} v    ,其中 v  代表节点V 的父亲节点集合 Bayesian 是一个有向非循环图: (1) 中节点与知识领域的随机变量一一对应(下文中不区分节 点与变量); (2)中的有向弧表示变量间的因果关系,从节点X 到节点Y 有 向弧的直观含义是X 对Y 有直接的因果影响;影响的强度或者说不确 定性由条件概率表示; (3)每个节点有一个条件概率表,定量描述其所有父亲节点对于 该节点的作用效果。 -2- (4)由领域专家给定网络结构和条件概率表。 )由领域专家给定网络结构和条件概率表。 )由领域专家给定网络结构和条件概率表。 )由领域专家给定网络结构和条件概率表。 )由领域专家给定网络结构和条件概率表。 )由领域专家给定网络结构和条件概率表。 )由领域专家给定网络结构和条件概率表。 )由领域专家给定网络结构和条件概率表。 )由领域专家给定网络结构和条件概率表。 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 较容易的 较容易的 较容易的 (给定网络结构相对容易 给定网络结构相对容易 给定网络结构相对容易 给定网络结构相对容易 给定网络结构相对容易 )─ 事实上,要远比际声明出这 事实上,要远比际声明出这 事实上,要远比际声明出这 事实上,要远比际声明出这 事实上,要远比际声明出这 事实上,要远比际声明出这 事实上,要远比际声明出这 事实上,要远比际声明出这 事实上,要远比际声明出这 些概率本身容易得多 些概率本身容易得多 些概率本身容易得多 些概率本身容易得多 些概率本身容易得多 (给定准确的条件概率相对 给定准确的条件概率相对 给定准确的条件概率相对 给定准确的条件概率相对 给定准确的条件概率相对 给定准确的条件概率相对 困难) 。一旦 。一旦 。一旦 BayesianBayesianBayesianBayesianBayesian Bayesian的拓扑结构给定, 则只需对那些直接相互依赖节点出条件概率的拓扑结构给定, 则只需对那些直接相互依赖节点出条件概率的拓扑结构给定, 则只需对那些直接相互依赖节点出条件概率的拓扑结构给定, 则只需对那些直接相互依赖节点出条件概率的拓扑结构给定, 则只需对那些直接相互依赖节点出条件概率的拓扑结构给定, 则只需对那些直接相互依赖节点出条件概率的拓扑结构给定, 则只需对那些直接相互依赖节点出条件概率的拓扑结构给定, 则只需对那些直接相互依赖节点出条件概率的拓扑结构给定, 则只需对那些直接相互依赖节点出条件概率的拓扑结构给定, 则只需对那些直接相互依赖节点出条件概率的拓扑结构给定, 则只需对那些直接相互依赖节点出条件概率
<think>嗯,用户想了解人工智能的基础知识,需要入门介绍。首先,我得确定用户的基础水平,但问题里没有明确说明,可能是个零基础的学习者。所以要从最基础的概念讲起。 根据引用[1],人工智能是模拟人类智能的科学技术,包括学习、推理和自我修正。这部分可以作为定义部分,先解释清楚什么是AI。然后需要分几个主要部分来介绍,比如核心概念、分支领域、学习路径和应用场景。 接下来,引用[4]提到机器学习算法和深度学习框架是基础,可能需要强调这些技术的重要性。同时,引用[3]给出了一些学习资源,比如在线平台和社区,这部分可以作为学习路径的建议,帮助用户进一步学习。 用户可能对如何开始学习AI感兴趣,所以需要列出学习路径,比如数学基础、编程语言、机器学习基础等步骤。引用[2]提到了大模型如GPT-3、BERT,可以介绍当前热门的应用,比如自然语言处理和计算机视觉。 还要注意用户可能不知道需要哪些前置知识,比如数学中的线性代数、概率论,编程中的Python。这些都需要在回答中提及,确保用户有明确的学习方向。 另外,生成的相关问题要覆盖用户可能有的后续疑问,比如数学要求、编程语言选择、应用领域等,这样能帮助他们继续深入学习。需要确保每个部分结构清晰,用简单的语言解释概念,避免过于专业术语,让入门者容易理解。 最后,检查是否符合格式要求,数学公式用$...$,独立公式用$$...$$,确保引用正确添加,比如在定义部分加上[^1],学习路径引用[^2]和[^3]。代码示例可能需要展示一个简单的机器学习代码,比如线性回归,但用户的问题中没有明确是否需要代码,但根据示例中的快速排序,可能可以加入一个简单的示例,比如使用Python的scikit-learn库做一个分类任务,这样更直观。 总结下来,回答的结构应该是:定义、核心概念、分支领域、学习路径、应用场景、学习建议和相关问题。确保每个部分简短明了,重点突出,帮助用户构建完整的知识框架。</think>### 人工智能入门介绍 #### 1. 人工智能的定义 人工智能(Artificial Intelligence, AI)是研究如何使机器模拟人类智能的科学技术,涵盖学习(从数据中获取规则)、推理(基于规则推导结论)和自主修正等能力[^1]。其核心目标是构建能够执行复杂任务的智能系统,例如图像识别、自然语言处理等。 #### 2. 核心概念 - **机器学习(Machine Learning)**:通过算法让机器从数据中学习规律,典型方法包括监督学习(如分类、回归)和无监督学习(如聚类)。 - **深度学习(Deep Learning)**:基于多层神经网络机器学习方法,擅长处理图像、语音等高维数据,典型模型如卷积神经网络(CNN)和循环神经网络(RNN)[^4]。 - **大模型(Large Language Models)**:如GPT-3、BERT等,通过海量数据预训练实现文本生成和理解能力[^2]。 #### 3. 主要分支领域 | 领域 | 典型应用场景 | |--------------------|---------------------------| | 自然语言处理(NLP)| 机器翻译、聊天机器人 | | 计算机视觉(CV) | 人脸识别、自动驾驶 | | 强化学习(RL) | 游戏AI、机器人控制 | #### 4. 学习路径建议 1. **数学基础**:掌握线性代数(矩阵运算)、概率论(贝叶斯定理)和微积分(梯度计算)。 2. **编程语言**:Python为主,需熟悉NumPy、Pandas等库,例如: ```python # 简单线性回归示例 from sklearn.linear_model import LinearRegression model = LinearRegression() model.fit(X_train, y_train) ``` 3. **机器学习基础**:从经典算法(如决策树、SVM)过渡到深度学习框架(如PyTorch、TensorFlow)。 #### 5. 应用场景与技术关系 $$ \text{AI系统} = \text{数据} + \text{算法} + \text{算力} $$ 例如,人脸识别系统需要标注图像数据(数据)、CNN模型(算法)和GPU加速(算力)[^4]。 #### 6. 学习资源推荐 - **理论入门**:吴恩达《机器学习》课程 - **实践平台**:Kaggle竞赛、Google Colab - **动态追踪**:Wired科技专栏[^3]、arXiv论文预印本平台
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值