MapReduce
文章平均质量分 82
Android路上的人
开源社区爱好者, Apache Hadoop PMC & Apache Ozone PMC, 专注于分布式存储领域, 大数据方面的研究
展开
-
MapReduce总体架构分析
继前段时间分析Redis源码一段时间之后,我即将开始接下来的一段技术学习的征程,研究的技术就是当前非常火热的Hadoop,但是一个Hadoop生态圈是非常庞大的,所以首先我的打算是挑选其中的一部分模块,去学习,研究,我就选中了MapReduce。MapReduce最早是由Google公司在04年发布的论文中提出的一种思想,后来被人实现出来,才有了后面的Hadoop的诞生。学习MapReduce的打原创 2014-11-12 21:29:50 · 3801 阅读 · 0 评论 -
TaskTracker学习笔记
上次分析完JobTracker通过TaskScheduler如何把作业分配给TaskTracker,这次把目光 移动到TaskTracker上面。TaskTracker在这里其实是一个slave的从属关系。我在后面的分析会通过TaskTracker的执行流程,主要讲他的2个过程的分析1.作业启动执行2.与JobTracker的heatbeat的过程。2个过程都是非常的典型。 与原创 2014-11-25 09:41:50 · 3158 阅读 · 0 评论 -
Yarn架构基本概况(一)
1)引言针对MRv1在扩展性,可靠性,资源利用率和多框架的支持上存在着明显的不足,进而诞生了下一代的MapReduce的计算框架MapReduce Version2,MRV1中有一个很大的问题就是把资源管理和作业调度都扔给了JobTracker,造成了严重的单点瓶颈问题,所有MRV2主要在这一点上做了改进,他将资源管理模块构建成了一个独立的通用系统叫做Yarn,一下子MRV2的核心从MapRe原创 2014-12-15 13:48:17 · 3228 阅读 · 1 评论 -
JobTracker作业启动过程分析
在Hadoop中,启动作业运行的方式有很多,可以用命令行格式把打包好后的作业提交还可以,用Hadoop的插件进行应用开发,在这么多的方式中,都会必经过一个流程,作业会以JobInProgress的形式提交到JobTracker中。什么叫JobTracker呢,也许有些人了解Hadoop只知道他的MapReduce计算模型,那个过程只是其中的Task执行的一个具体过程,比较微观上的流程,而JobTr原创 2014-11-21 19:34:36 · 4345 阅读 · 1 评论 -
JobTracker作业调度分析
JobTracker的作业调度给我感觉就是比较宏观意义上的操作。倘若你只了解了MapReduce的工作原理是远远不够的,这时去学习一下他在宏观层面的原理实现也是对我们非常有帮助的。首先我们又得从上次分析的任务提交之后的操作说起,Job作业通过RPC通信提交到JobTracker端之后,接下来会触发到下面的方法;/** * 初始化作业操作 */ public void initJ原创 2014-11-23 10:32:48 · 3371 阅读 · 0 评论 -
OutputFormat输出过程的学习
花了大约1周的时间,终于把MapReduce的5大阶段的源码学习结束掉了,收获不少,就算本人对Hadoop学习的一个里程碑式的纪念吧。今天花了一点点的时间,把MapReduce的最后一个阶段,输出OutputFormat给做了分析,这个过程跟InputFormat刚刚好是对着干的,二者极具对称性。为什么这么说呢,待我一一分析。 OutputFormat过程的作用就是定义数原创 2014-11-19 10:40:39 · 7841 阅读 · 0 评论 -
Reduce Task的学习笔记
MapReduce五大过程已经分析过半了,上次分析完Map的过程,着实花费了我的很多时间,不过收获很大,值得了额,这次用同样的方法分析完了Reduce的过程,也算是彻底摸透了MapReduce思想的2个最最重要的思想了吧。好,废话不多,切入正题,在学习Reduce过程分析的之前,我特意查了书籍上或网络上相关的资料,我发现很大都是大同小异,缺乏对于源码的参照分析,所以我个人认为,我了可以在某些细节上原创 2014-11-18 10:39:11 · 4556 阅读 · 1 评论 -
Partitioner分区过程分析
Partition的中文意思就是分区,分片的意思,这个阶段也是整个MapReduce过程的第三个阶段,就在Map任务的后面,他的作用就是使key分到通过一定的分区算法,分到固定的区域中,给不同的Reduce做处理,达到负载均衡的目的。他的执行过程其实就是发生在上篇文章提到的collect的过程阶段,当输入的key调用了用户的map函数时,中间结果就会被分区了。虽说这个过程看似不是很重要,但是也有值原创 2014-11-16 14:48:59 · 4532 阅读 · 0 评论 -
Map Task内部实现分析
上篇我刚刚学习完,Spilt的过程,还算比较简单的了,接下来学习的就是Map操作的过程了,Map和Reduce一样,是整个MapReduce的重要内容,所以,这一篇,我会好好的讲讲里面的内部实现过程。首先要说,MapTask,分为4种,可能这一点上有人就可能知道了,分别是Job-setup Task,Job-cleanup Task,Task-cleanup和Map Task。前面3个都是辅助性质原创 2014-11-15 08:58:49 · 5206 阅读 · 3 评论 -
MapReduce的InputFormat过程的学习
昨天经过几个小时的学习,把MapReduce的第一个阶段的过程学习了一下,也就是最最开始的时候从文件中的Data到key-value的映射,也就是InputFormat的过程。虽说过程不是很难,但是也存在很多细节的。也很少会有人对此做比较细腻的研究,学习。今天,就让我来为大家剖析一下这段代码的原理。我还为此花了一点时间做了几张结构图,便于大家理解。在这里先声明一下,我研究的MapReduce主要研原创 2014-11-14 10:14:05 · 3216 阅读 · 0 评论 -
Yarn架构基本概况(二)
在概况(一)中,主要简单的对Yarn的情况作了简单的介绍,今天花一定时间在某些具体的模块上呈现以下Yarn的整体情况,帮助大家更好的理解Yarn。1)ResourceManager在Yarn的整体架构中,他用的也是Master/Slave架构,他的Slave是NodeManager,RM在Yarn中扮演着一个非常重要的角色,他是负责集群中所有资源的统一管理和分配的。他根据各个NM的资源汇报原创 2014-12-16 16:15:39 · 2712 阅读 · 0 评论