贝叶斯网络节点概率的计算

本文通过实例解释了如何根据条件概率表计算贝叶斯网络中的节点概率,强调了全概率公式和条件概率在计算中的作用。贝叶斯公式在面对新证据时,帮助我们更新对事件概率的估计,将先验知识与实际观测相结合,实现从一般化到个性化的推理过程。
摘要由CSDN通过智能技术生成

列举一个例子

在这里插入图图1片描述
在这里插入图片描述
问题:根据图(a)给出的条件概率表,求出图(b)中各个节点的概率值。

P(B=真)=P(A真)P(B|A=真)+P(A假)P(B|A=假);

P(D=真)=P(BE)P(D|BE) (这里凸显了独立性的特点)
=P(D|BE) P(B)P(E)
=P(D=真|B=真,E=真)+P(D=真|B=真,E=假)
+P(D=真|B=假,E=真)+P(D=真|B=假,E=假)

在这里,全概率公式起着重要作用。

以上我们已经给出的概率,分为父节点的概率和 “在父节点下的子节点的概率,即条件概率”,统称为先验概率,由统计方法或人类经验提前给出。
条件概率在计算中起着重要作用。
在这里插入图片描述
在这里,贝叶斯公式在这里起着重要作用。
用自己的话说,作为一个有知识有经验的人类,在看待一件事情

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值