列举一个例子
问题:根据图(a)给出的条件概率表,求出图(b)中各个节点的概率值。
P(B=真)=P(A真)P(B|A=真)+P(A假)P(B|A=假);
P(D=真)=P(BE)P(D|BE) (这里凸显了独立性的特点)
=P(D|BE) P(B)P(E)
=P(D=真|B=真,E=真)+P(D=真|B=真,E=假)
+P(D=真|B=假,E=真)+P(D=真|B=假,E=假)
在这里,全概率公式起着重要作用。
以上我们已经给出的概率,分为父节点的概率和 “在父节点下的子节点的概率,即条件概率”,统称为先验概率,由统计方法或人类经验提前给出。
条件概率在计算中起着重要作用。
在这里,贝叶斯公式在这里起着重要作用。
用自己的话说,作为一个有知识有经验的人类,在看待一件事情